LSST Applications 26.0.0,g0265f82a02+6660c170cc,g07994bdeae+30b05a742e,g0a0026dc87+17526d298f,g0a60f58ba1+17526d298f,g0e4bf8285c+96dd2c2ea9,g0ecae5effc+c266a536c8,g1e7d6db67d+6f7cb1f4bb,g26482f50c6+6346c0633c,g2bbee38e9b+6660c170cc,g2cc88a2952+0a4e78cd49,g3273194fdb+f6908454ef,g337abbeb29+6660c170cc,g337c41fc51+9a8f8f0815,g37c6e7c3d5+7bbafe9d37,g44018dc512+6660c170cc,g4a941329ef+4f7594a38e,g4c90b7bd52+5145c320d2,g58be5f913a+bea990ba40,g635b316a6c+8d6b3a3e56,g67924a670a+bfead8c487,g6ae5381d9b+81bc2a20b4,g93c4d6e787+26b17396bd,g98cecbdb62+ed2cb6d659,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga1e77700b3+99e9273977,gae46bcf261+6660c170cc,gb2715bf1a1+17526d298f,gc86a011abf+17526d298f,gcf0d15dbbd+96dd2c2ea9,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6660c170cc,ge23793e450+96dd2c2ea9,gf041782ebf+171108ac67
LSST Data Management Base Package
Loading...
Searching...
No Matches
BigInteger.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2014-2015 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
25
27
28#include <algorithm>
29
30
31namespace lsst {
32namespace sphgeom {
33
34namespace {
35
36// `_add` computes the sum of the digits in m1 and m2 and stores the result in
37// m, which may equal either m1 or m2. It returns the number of digits in the
38// sum.
39unsigned _add(uint32_t * const m,
40 uint32_t const * const m1,
41 uint32_t const * const m2,
42 unsigned const size1,
43 unsigned const size2)
44{
45 uint64_t sum = 0;
46 unsigned i = 0;
47 unsigned const size = std::min(size1, size2);
48 for (; i < size; ++i) {
49 sum = static_cast<uint64_t>(m1[i]) + (sum >> 32) +
50 static_cast<uint64_t>(m2[i]);
51 m[i] = static_cast<uint32_t>(sum);
52 }
53 for (; i < size1; ++i) {
54 sum = static_cast<uint64_t>(m1[i]) + (sum >> 32);
55 m[i] = static_cast<uint32_t>(sum);
56 }
57 for (; i < size2; ++i) {
58 sum = static_cast<uint64_t>(m2[i]) + (sum >> 32);
59 m[i] = static_cast<uint32_t>(sum);
60 }
61 uint32_t carry = static_cast<uint32_t>(sum >> 32);
62 if (carry != 0) {
63 m[i] = carry;
64 ++i;
65 }
66 return i;
67}
68
69// `_sub` computes the difference of the digits in m1 and m2 and stores the
70// result in m, which may equal either m1 or m2. It assumes that the difference
71// is non-negative, and returns the the number of digits in the difference.
72unsigned _sub(uint32_t * const m,
73 uint32_t const * const m1,
74 uint32_t const * const m2,
75 unsigned const size1,
76 unsigned const size2)
77{
78 int64_t diff = 0;
79 unsigned i = 0;
80 // Note that right shifting a negative integer is implementation defined
81 // (not undefined) behavior. Here we assume arithmetic right shifts for
82 // negative integers.
83 //
84 // TODO(smm): check for this at build time, and provide an alternate
85 // implementation when this assumption does not hold.
86 for (; i < size2; ++i) {
87 diff = static_cast<int64_t>(m1[i]) + (diff >> 32) -
88 static_cast<int64_t>(m2[i]);
89 m[i] = static_cast<uint32_t>(diff);
90 }
91 // Borrow from the remaining digits in m1 while necessary.
92 for (; diff < 0; ++i) {
93 diff = static_cast<int64_t>(m1[i]) - 1;
94 m[i] = static_cast<uint32_t>(diff);
95 }
96 // If we subtracted anything from the most significant digit in m1, strip
97 // any leading zeroes that may have been introduced.
98 if (i == size1) {
99 while (m1[i - 1] == 0) { --i; }
100 return i;
101 }
102 // Otherwise, copy the remaining digits from m1 to m.
103 for (; i < size1; ++i) {
104 m[i] = m1[i];
105 }
106 return i;
107}
108
109// `_mul` computes the product of m1 and m2 and stores the result in m,
110// which may equal either m1 or m2. It assumes that m1 has at least as many
111// digits as m2, and returns the the number of digits in the product.
112unsigned _mul(uint32_t * const m,
113 uint32_t const * const m1,
114 uint32_t const * const m2,
115 unsigned const size1,
116 unsigned const size2)
117{
118 // The algorithm implemented is long multiplication, and is good for small
119 // digit counts. A requirement for anything fancier involves enough
120 // complexity that switching to GMP is definitely warranted.
121 //
122 // The only small subtlety here is that because m is allowed to alias m1
123 // or m2, we compute products of m2 from most to least significant digit of
124 // m1. This way no as yet unprocessed input digits are overwritten.
125 unsigned const size = size1 + size2;
126 for (unsigned i = size1; i < size; ++i) {
127 m[i] = 0;
128 }
129 for (unsigned i = size1; i > 0; --i) {
130 uint64_t digit = m1[i - 1];
131 uint64_t carry = static_cast<uint64_t>(m2[0]) * digit;
132 unsigned j = 1;
133 m[i - 1] = static_cast<uint32_t>(carry);
134 carry >>= 32;
135 for (; j < size2; ++j) {
136 carry = static_cast<uint64_t>(m2[j]) * digit +
137 static_cast<uint64_t>(m[i + j - 1]) +
138 carry;
139 m[i + j - 1] = static_cast<uint32_t>(carry);
140 carry >>= 32;
141 }
142 for (; carry != 0; ++j) {
143 carry += static_cast<uint64_t>(m[i + j - 1]);
144 m[i + j - 1] = static_cast<uint32_t>(carry);
145 carry >>= 32;
146 }
147 }
148 // The product of m1 and m2 contains size1 + size2 or size1 + size2 - 1
149 // digits.
150 return m[size - 1] == 0 ? size - 1 : size;
151}
152
153} // unnamed namespace
154
155
157 if (b._sign == 0) {
158 return *this;
159 }
160 if (_sign == 0) {
161 *this = b;
162 return *this;
163 }
164 if (this == &b) {
165 return multiplyPow2(1);
166 }
167 // When adding two magnitudes, the maximum number of bits in the result is
168 // one greater than the number of bits B in the larger input. When
169 // subtracting them, the maximum result size is B.
170 _checkCapacity(std::max(_size, b._size) + 1);
171 if (_sign == b._sign) {
172 // If the signs of both integers match, add their magnitudes.
173 _size = _add(_digits, _digits, b._digits, _size, b._size);
174 return *this;
175 }
176 // Otherwise, subtract the smaller magnitude from the larger. The sign of
177 // the result is the sign of the input with the larger magnitude.
178 if (_size > b._size) {
179 _size = _sub(_digits, _digits, b._digits, _size, b._size);
180 } else if (_size < b._size) {
181 _size = _sub(_digits, b._digits, _digits, b._size, _size);
182 _sign = b._sign;
183 } else {
184 // Both magnitudes have the same number of digits. Compare and discard
185 // leading common digits until we find a digit position where the
186 // magnitudes differ, or we determine that they are identical.
187 int i = _size;
188 for (; i > 0 && _digits[i - 1] == b._digits[i - 1]; --i) {}
189 if (i == 0) {
190 setToZero();
191 } else if (_digits[i - 1] > b._digits[i - 1]) {
192 _size = _sub(_digits, _digits, b._digits, i, i);
193 } else {
194 _size = _sub(_digits, b._digits, _digits, i, i);
195 _sign = b._sign;
196 }
197 }
198 return *this;
199}
200
202 if (this != &b) {
203 // Avoid code duplication by computing a - b = -(-a + b).
204 // This only works if a and b are distinct.
205 negate();
206 add(b);
207 negate();
208 } else {
209 setToZero();
210 }
211 return *this;
212}
213
215 if (_sign == 0 || n == 0) {
216 return *this;
217 }
218 // Decompose n into (s, z), where s is a shift by less than 32 bits, and
219 // z is the number of trailing zero digits introduced by the shift.
220 unsigned const z = (n >> 5);
221 unsigned const s = (n & 0x1f);
222 unsigned const size = _size + z;
223 _checkCapacity(size + 1);
224 if (s == 0) {
225 // Right-shifting an unsigned 32 bit integer by 32 bits is undefined
226 // behavior. Avoid that using this special case code.
227 for (unsigned i = _size; i != 0; --i) {
228 _digits[i + z - 1] = _digits[i - 1];
229 }
230 for (unsigned i = z; i != 0; --i) {
231 _digits[i - 1] = 0;
232 }
233 _size = size;
234 } else {
235 uint32_t low, high = 0;
236 for (unsigned i = _size; i != 0; --i, high = low) {
237 low = _digits[i - 1];
238 _digits[i + z] = (high << s) | (low >> (32 - s));
239 }
240 _digits[z] = high << s;
241 for (unsigned i = z; i != 0; --i) {
242 _digits[i] = 0;
243 }
244 _size = (_digits[size] == 0) ? size: size + 1;
245 }
246 return *this;
247}
248
250 _sign *= b._sign;
251 if (_sign == 0) {
252 _size = 0;
253 return *this;
254 }
255 _checkCapacity(_size + b._size);
256 if (_size >= b._size) {
257 _size = _mul(_digits, _digits, b._digits, _size, b._size);
258 } else {
259 _size = _mul(_digits, b._digits, _digits, b._size, _size);
260 }
261 return *this;
262}
263
264}} // namespace lsst::sphgeom
This file declares a class for arbitrary precision integers.
double z
Definition Match.cc:44
int m
Definition SpanSet.cc:48
table::Key< int > b
BigInteger is an arbitrary precision signed integer class.
Definition BigInteger.h:45
BigInteger & subtract(BigInteger const &b)
subtract subtracts b from this integer.
BigInteger & multiply(BigInteger const &b)
multiply multiplies this integer by b.
BigInteger & multiplyPow2(unsigned n)
multiplyPow2 multiplies this integer by 2ⁿ.
void setToZero()
setToZero sets this integer to zero.
Definition BigInteger.h:81
void negate()
negate multiplies this integer by -1.
Definition BigInteger.h:103
BigInteger & add(BigInteger const &b)
add adds b to this integer.
T max(T... args)
T min(T... args)