46 Eigen::Index firstIndex) {
47 Eigen::Index index = firstIndex;
48 if (whatToFit.
find(
"Model") == std::string::npos) {
49 LOGLS_WARN(
_log,
"assignIndices was called and Model is *not* in whatToFit");
54 _fittingChips = (whatToFit.
find(
"ModelChip") != std::string::npos);
55 _fittingVisits = (whatToFit.
find(
"ModelVisit") != std::string::npos);
57 if ((!_fittingChips) && (!_fittingVisits)) {
58 _fittingChips = _fittingVisits =
true;
63 auto mapping = idMapping.second.get();
65 if (mapping->isFixed())
continue;
66 mapping->setIndex(index);
67 index += mapping->getNpar();
72 auto mapping = idMapping.second.get();
73 mapping->setIndex(index);
74 index += mapping->getNpar();
78 idMapping.second->setWhatToFit(_fittingChips, _fittingVisits);
86 auto mapping = idMapping.second.get();
88 if (mapping->isFixed())
continue;
89 mapping->offsetParams(delta.segment(mapping->getIndex(), mapping->getNpar()));
94 auto mapping = idMapping.second.get();
95 mapping->offsetParams(delta.segment(mapping->getIndex(), mapping->getNpar()));
102 idMapping.second->freezeErrorTransform();
105 idMapping.second->freezeErrorTransform();
111 mapping->getMappingIndices(indices);
117 total += idMapping.second->getNpar();
120 total += idMapping.second->getNpar();
127 Eigen::VectorXd &derivatives)
const {
129 mapping->computeParameterDerivatives(measuredStar, measuredStar.
getInstFlux(), derivatives);
135 auto coeffs =
transform->getCoefficients();
137 ndarray::Array<double, 2, 2> chebyCoeffs =
139 Eigen::VectorXd::Index k = 0;
141 for (ndarray::Size j = 0; j <=
order; ++j) {
142 ndarray::Size
const iMax =
order - j;
143 for (ndarray::Size i = 0; i <= iMax; ++i, ++k) {
144 chebyCoeffs[k][0] = coeffs[j][i];
145 chebyCoeffs[k][1] = 1;
146 chebyCoeffs[k][2] = i;
147 chebyCoeffs[k][3] = j;
156 out <<
"Sensor: " << idMapping.first <<
std::endl;
157 idMapping.second->print(out);
162 out <<
"Visit: " << idMapping.first <<
std::endl;
163 idMapping.second->print(out);
172 "ConstrainedPhotometryModel cannot find CcdImage " + ccdImage.
getName());
173 return idMapping->second.get();
176template <
class ChipTransform,
class VisitTransform,
class ChipVisitMapping>
178 geom::Box2D const &focalPlaneBBox,
int visitOrder) {
184 for (
auto const &ccdImage : ccdImageList) {
185 auto visit = ccdImage->getVisit();
186 auto chip = ccdImage->getCcdId();
192 auto center = ccdImage->getDetector()->getCenter(afw::cameraGeom::FOCAL_PLANE);
194 if (radius2 < minRadius2) {
195 minRadius2 = radius2;
196 constrainedChip = chip;
205 auto visitTransform = std::make_unique<VisitTransform>(visitOrder, focalPlaneBBox);
214 for (
auto const &ccdImage : ccdImageList) {
215 auto visit = ccdImage->getVisit();
216 auto chip = ccdImage->getCcdId();
221 <<
" visit mappings; holding chip " << constrainedChip <<
" fixed ("
236 assert(mapping !=
nullptr);
238 auto visitPhotometryTransform = std::dynamic_pointer_cast<PhotometryTransformChebyshev>(
239 mapping->getVisitMapping()->getTransform());
240 assert(visitPhotometryTransform !=
nullptr);
241 auto focalBBox = visitPhotometryTransform->getBBox();
244 auto coeff_f = toChebyMapCoeffs(std::dynamic_pointer_cast<PhotometryTransformChebyshev>(
245 mapping->getVisitMapping()->getTransform()));
251 double chipConstant = mapping->getChipMapping()->getParameters()[0];
255 auto pixToFocal =
detector->getTransform(afw::cameraGeom::PIXELS, afw::cameraGeom::FOCAL_PLANE);
257 for (
auto const &point : pixToFocal->applyForward(
geom::Box2D(ccdBBox).getCorners())) {
260 double visitMean = visitPhotometryTransform->mean(ccdBBoxInFocal);
262 return {chipConstant, visitTransform, pixToFocal, visitMean};
274 return mapping->transform(measuredStar, measuredStar.
getInstFlux());
281 return mapping->transformError(measuredStar, measuredStar.
getInstFlux(), tempErr);
293 auto transform = prep.pixToFocal->then(prep.visitTransform)->then(zoomTransform);
296 double mean = prep.chipConstant * prep.visitMean;
298 auto boundedField = std::make_shared<afw::math::TransformBoundedField>(ccdBBox, *
transform);
299 return std::make_shared<afw::image::PhotoCalib>(mean, ccdImage.
getPhotoCalib()->getCalibrationErr(),
300 boundedField,
false);
304 out <<
"ConstrainedFluxModel:" <<
std::endl;
318 return mapping->transform(measuredStar, measuredStar.
getInstMag());
325 return mapping->transformError(measuredStar, measuredStar.
getInstFlux(), tempErr);
333 using namespace std::string_literals;
335 ast::MathMap(1, 1, {
"y=pow(10.0,x/-2.5)"s}, {
"x=-2.5*log10(y)"s}));
343 auto transform = prep.pixToFocal->then(prep.visitTransform)->then(logTransform)->then(zoomTransform);
346 double mean = chipCalibration *
std::pow(10, prep.visitMean / -2.5);
348 auto boundedField = std::make_shared<afw::math::TransformBoundedField>(ccdBBox, *
transform);
349 return std::make_shared<afw::image::PhotoCalib>(mean, ccdImage.
getPhotoCalib()->getCalibrationErr(),
350 boundedField,
false);
table::Key< int > detector
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
LSST DM logging module built on log4cxx.
#define LOGLS_WARN(logger, message)
Log a warn-level message using an iostream-based interface.
#define LOGLS_INFO(logger, message)
Log a info-level message using an iostream-based interface.
#define LOGLS_DEBUG(logger, message)
Log a debug-level message using an iostream-based interface.
Implementation of the Photometric Calibration class.
T bucket_count(T... args)
A ChebyMap is a form of Mapping which performs a Chebyshev polynomial transformation.
A MathMap is a Mapping which allows you to specify a set of forward and/or inverse transformation fun...
A Mapping which "zooms" a set of points about the origin by multiplying all coordinate values by the ...
A floating-point coordinate rectangle geometry.
void include(Point2D const &point) noexcept
Expand this to ensure that this->contains(point).
Handler of an actual image from a single CCD.
std::shared_ptr< afw::cameraGeom::Detector > getDetector() const
std::shared_ptr< afw::image::PhotoCalib > getPhotoCalib() const
Return the exposure's photometric calibration.
std::string getName() const
Return the _name that identifies this ccdImage.
CcdImageKey getHashKey() const
A two-level photometric transform: one for the ccd and one for the visit.
std::shared_ptr< afw::image::PhotoCalib > toPhotoCalib(CcdImage const &ccdImage) const override
Return the mapping of ccdImage represented as a PhotoCalib.
double computeResidual(CcdImage const &ccdImage, MeasuredStar const &measuredStar) const override
Compute the residual between the model applied to a star and its associated fittedStar.
double transformError(CcdImage const &ccdImage, MeasuredStar const &measuredStar) const override
Return the on-sky transformed flux uncertainty for measuredStar on ccdImage.
double transform(CcdImage const &ccdImage, MeasuredStar const &measuredStar) const override
Return the on-sky transformed flux for measuredStar on ccdImage.
void print(std::ostream &out) const override
Print a string representation of the contents of this mapping, for debugging.
double computeResidual(CcdImage const &ccdImage, MeasuredStar const &measuredStar) const override
Compute the residual between the model applied to a star and its associated fittedStar.
void print(std::ostream &out) const override
Print a string representation of the contents of this mapping, for debugging.
double transformError(CcdImage const &ccdImage, MeasuredStar const &measuredStar) const override
Return the on-sky transformed flux uncertainty for measuredStar on ccdImage.
double transform(CcdImage const &ccdImage, MeasuredStar const &measuredStar) const override
Return the on-sky transformed flux for measuredStar on ccdImage.
std::shared_ptr< afw::image::PhotoCalib > toPhotoCalib(CcdImage const &ccdImage) const override
Return the mapping of ccdImage represented as a PhotoCalib.
PrepPhotoCalib prepPhotoCalib(CcdImage const &ccdImage) const
Helper for preparing toPhotoCalib()
void initialize(CcdImageList const &ccdImageList, geom::Box2D const &focalPlaneBBox, int visitOrder)
Initialize the chip, visit, and chipVisit mappings by creating appropriate transforms and mappings.
PhotometryMappingBase * findMapping(CcdImage const &ccdImage) const override
Return a pointer to the mapping associated with this ccdImage.
void freezeErrorTransform() override
Once this routine has been called, the error transform is not modified by offsetParams().
void offsetParams(Eigen::VectorXd const &delta) override
Offset the parameters by the provided amounts (by -delta).
void print(std::ostream &out) const override
Print a string representation of the contents of this mapping, for debugging.
std::size_t getTotalParameters() const override
Return the total number of parameters in this model.
Eigen::Index assignIndices(std::string const &whatToFit, Eigen::Index firstIndex) override
Assign indices in the full matrix to the parameters being fit in the mappings, starting at firstIndex...
void getMappingIndices(CcdImage const &ccdImage, IndexVector &indices) const override
Get how this set of parameters (of length Npar()) map into the "grand" fit.
void computeParameterDerivatives(MeasuredStar const &measuredStar, CcdImage const &ccdImage, Eigen::VectorXd &derivatives) const override
Compute the parametric derivatives of this model.
virtual double initialChipCalibration(std::shared_ptr< afw::image::PhotoCalib const > photoCalib)=0
Return the initial calibration to use from this photoCalib.
Sources measured on images.
double getInstFlux() const
double getInstMag() const
std::shared_ptr< FittedStar > getFittedStar() const
Relates transform(s) to their position in the fitting matrix and allows interaction with the transfor...
LOG_LOGGER _log
lsst.logging instance, to be created by a subclass so that messages have consistent name.
double tweakFluxError(jointcal::MeasuredStar const &measuredStar) const
Add a fraction of the instrumental flux to the instrumental flux error, in quadrature.
Reports invalid arguments.
double ABMagnitudeToNanojansky(double magnitude)
Convert an AB magnitude to a flux in nanojansky.
To hold the return of prepPhotoCalib.