LSST Applications 26.0.0,g0265f82a02+6660c170cc,g07994bdeae+30b05a742e,g0a0026dc87+17526d298f,g0a60f58ba1+17526d298f,g0e4bf8285c+96dd2c2ea9,g0ecae5effc+c266a536c8,g1e7d6db67d+6f7cb1f4bb,g26482f50c6+6346c0633c,g2bbee38e9b+6660c170cc,g2cc88a2952+0a4e78cd49,g3273194fdb+f6908454ef,g337abbeb29+6660c170cc,g337c41fc51+9a8f8f0815,g37c6e7c3d5+7bbafe9d37,g44018dc512+6660c170cc,g4a941329ef+4f7594a38e,g4c90b7bd52+5145c320d2,g58be5f913a+bea990ba40,g635b316a6c+8d6b3a3e56,g67924a670a+bfead8c487,g6ae5381d9b+81bc2a20b4,g93c4d6e787+26b17396bd,g98cecbdb62+ed2cb6d659,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga1e77700b3+99e9273977,gae46bcf261+6660c170cc,gb2715bf1a1+17526d298f,gc86a011abf+17526d298f,gcf0d15dbbd+96dd2c2ea9,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6660c170cc,ge23793e450+96dd2c2ea9,gf041782ebf+171108ac67
LSST Data Management Base Package
Loading...
Searching...
No Matches
PackedBasis2d.h
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * Developed for the LSST Data Management System.
4 * This product includes software developed by the LSST Project
5 * (https://www.lsst.org).
6 * See the COPYRIGHT file at the top-level directory of this distribution
7 * for details of code ownership.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <https://www.gnu.org/licenses/>.
21 */
22#ifndef LSST_AFW_MATH_POLYNOMIALS_PackedBasis2d_h_INCLUDED
23#define LSST_AFW_MATH_POLYNOMIALS_PackedBasis2d_h_INCLUDED
24
25#include "lsst/geom/Point.h"
29
30namespace lsst { namespace geom { namespace polynomials {
31
32template <typename Basis1d, PackingOrder packing>
33class PackedBasis2d;
34
35
41public:
42
44 explicit PackedBasisWorkspace2d(std::size_t order) : _x(order + 1), _y(order + 1) {}
45
47 std::size_t getOrder() const { return _x.size() - 1; }
48
49private:
50
51 template <typename Recurrence, PackingOrder packing>
52 friend class PackedBasis2d;
53
54 Eigen::VectorXd _x;
55 Eigen::VectorXd _y;
56};
57
58template <typename Basis>
59class Function2d;
60
74template <typename Basis1d, PackingOrder packing>
76public:
77
80
83
86
89
92
94 explicit PackedBasis2d(Basis1d const & basis1d) : _basis1d(basis1d) {}
95
97 template <typename ...Args>
98 explicit PackedBasis2d(Args&& ...args) : _basis1d(std::forward<Args>(args)...) {}
99
101 PackedBasis2d(PackedBasis2d const &) = default;
102
105
108
111
113 std::size_t getOrder() const noexcept { return _basis1d.getOrder(); }
114
116 std::size_t size() const noexcept{ return IndexRange::computeSize(getOrder()); }
117
124 Scaled scaled(Scaling2d const & first) const {
125 return Scaled(*this, first);
126 }
127
131 }
132
155 IndexRange getIndices() const noexcept {
156 return IndexRange(typename IndexRange::iterator(), IndexRange::iterator::makeEnd(getOrder()));
157 }
158
161
181 template <typename Vector>
182 double sumWith(geom::Point2D const & point, Vector const & coefficients,
183 Workspace & workspace, SumMode mode=SumMode::FAST) const {
184 assert(workspace.getOrder() >= getOrder());
185 _basis1d.fill(point.getX(), workspace._x);
186 _basis1d.fill(point.getY(), workspace._y);
187 // This universal lambda lets us effectively template most of the
188 // implementation of this function on double vs. SafeSum<double>
189 // without having to define an external template.
190 auto accumulate = [coefficients, &workspace, this](auto & sum) {
191 for (auto const & index : getIndices()) {
192 sum += coefficients[index.flat]*workspace._x[index.nx]*workspace._y[index.ny];
193 }
194 };
195 double result = 0.0;
196 if (mode == SumMode::FAST) {
197 double z = 0.0;
198 accumulate(z);
199 result = z;
200 } else {
202 accumulate(z);
203 result = static_cast<double>(z);
204 }
205 return result;
206 }
207
209 template <typename Vector>
210 double sumWith(geom::Point2D const & point, Vector const & coefficients,
211 SumMode mode=SumMode::FAST) const {
212 auto workspace = makeWorkspace();
213 return sumWith(point, coefficients, workspace, mode);
214 }
215
227 template <typename Vector>
228 void fill(geom::Point2D const & point, Vector && basis, Workspace & workspace) const {
229 assert(workspace.getOrder() >= getOrder());
230 _basis1d.fill(point.getX(), workspace._x);
231 _basis1d.fill(point.getY(), workspace._y);
232 for (auto const & index : getIndices()) {
233 std::forward<Vector>(basis)[index.flat] = workspace._x[index.nx]*workspace._y[index.ny];
234 }
235 }
236
238 template <typename Vector>
239 void fill(geom::Point2D const & point, Vector && basis) const {
240 auto workspace = makeWorkspace();
241 fill(point, std::forward<Vector>(basis), workspace);
242 }
243
244private:
245 Basis1d _basis1d;
246};
247
248}}} // namespace lsst::geom::polynomials
249
250#endif // !LSST_AFW_MATH_POLYNOMIALS_PackedBasis2d_h_INCLUDED
py::object result
Definition _schema.cc:429
ndarray::Array< double const, 2, 2 > coefficients
double z
Definition Match.cc:44
int y
Definition SpanSet.cc:48
A basis interface for 1-d series expansions.
Definition Basis1d.h:36
std::size_t getOrder() const
Return the order of the basis.
void fill(double x, Vector &&basis) const
Evaluate the basis at a given point.
A 2-d function defined by a series expansion and its coefficients.
Definition Function2d.h:42
A Basis2d formed from the product of a Basis1d for each of x and y, truncated at the sum of their ord...
void fill(geom::Point2D const &point, Vector &&basis, Workspace &workspace) const
Evaluate the basis at a given point.
double sumWith(geom::Point2D const &point, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients (internal workspace version).
void fill(geom::Point2D const &point, Vector &&basis) const
Evaluate the basis at a given point (internal workspace version).
PackedBasis2d & operator=(PackedBasis2d &&)=default
Default move assignment.
PackedBasis2d(PackedBasis2d &&)=default
Default move constructor.
static constexpr std::size_t computeSize(std::size_t order)
Return the size of a PackedBasis with the given order.
PackedBasis2d(PackedBasis2d const &)=default
Default copy constructor.
PackedBasis2d(Basis1d const &basis1d)
Construct from a 1-d basis that will be used for both x and y.
std::size_t index(std::size_t x, std::size_t y) const
Return the flattened index of the basis function with the given x and y orders.
IndexRange getIndices() const noexcept
Return a range of iterators that dereference to Index2d.
double sumWith(geom::Point2D const &point, Vector const &coefficients, Workspace &workspace, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
PackedBasis2d & operator=(PackedBasis2d const &)=default
Default copy assignment.
std::size_t getOrder() const noexcept
Return the maximum order of the basis.
ScaledBasis2d< PackedBasis2d > Scaled
The type returned by scale().
Workspace makeWorkspace() const
Allocate a workspace that can be passed to sumWith() and fill() to avoid repeated memory allocations.
Scaled scaled(Scaling2d const &first) const
Return a scaled basis that delegates to a copy of this.
PackedBasisWorkspace2d Workspace
The type returned by makeWorkspace().
PackedBasis2d(Args &&...args)
Construct by forwarding all arguments to the 1-d basis constructor.
PackedIndexRange< packing > IndexRange
The type returned by getIndices().
std::size_t size() const noexcept
Return the number of basis functions.
A workspace object that can be used to avoid extra memory allocations in repeated calls to PackedBasi...
std::size_t getOrder() const
Return the maximum order this workspace supports.
PackedBasisWorkspace2d(std::size_t order)
Construct workspace for a basis with the given order.
An iterator for traversing "packed" triangular 2-d series expansions, in which two 1-d expansions are...
A specialized iterator range class for PackedIndexIterator, providing size calculation,...
static constexpr std::size_t computeSize(std::size_t order) noexcept
Return the flattened size of an expansion with the given maximum order (inclusive).
static constexpr std::size_t computeIndex(std::size_t nx, std::size_t ny) noexcept
Return the flattened index for the element with the given x and y orders.
A numerically stable summation algorithm for floating-point numbers.
Definition SafeSum.h:62
A 2-d basis that transforms all input points before evaluating nested basis.
A 2-d separable affine transform that can be used to map one interval to another.
Definition Scaling2d.h:48
SumMode
Enum used to control how to sum polynomial terms.
Definition SafeSum.h:32
@ FAST
Summation using regular floating-point addition.
STL namespace.
table::Key< table::Array< double > > basis
Definition PsfexPsf.cc:361
table::Key< int > order