LSST Applications 26.0.0,g0265f82a02+6660c170cc,g07994bdeae+30b05a742e,g0a0026dc87+17526d298f,g0a60f58ba1+17526d298f,g0e4bf8285c+96dd2c2ea9,g0ecae5effc+c266a536c8,g1e7d6db67d+6f7cb1f4bb,g26482f50c6+6346c0633c,g2bbee38e9b+6660c170cc,g2cc88a2952+0a4e78cd49,g3273194fdb+f6908454ef,g337abbeb29+6660c170cc,g337c41fc51+9a8f8f0815,g37c6e7c3d5+7bbafe9d37,g44018dc512+6660c170cc,g4a941329ef+4f7594a38e,g4c90b7bd52+5145c320d2,g58be5f913a+bea990ba40,g635b316a6c+8d6b3a3e56,g67924a670a+bfead8c487,g6ae5381d9b+81bc2a20b4,g93c4d6e787+26b17396bd,g98cecbdb62+ed2cb6d659,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga1e77700b3+99e9273977,gae46bcf261+6660c170cc,gb2715bf1a1+17526d298f,gc86a011abf+17526d298f,gcf0d15dbbd+96dd2c2ea9,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6660c170cc,ge23793e450+96dd2c2ea9,gf041782ebf+171108ac67
LSST Data Management Base Package
Loading...
Searching...
No Matches
Prior.h
Go to the documentation of this file.
1// -*- lsst-c++ -*-
2/*
3 * LSST Data Management System
4 * Copyright 2008-2013 LSST Corporation.
5 *
6 * This product includes software developed by the
7 * LSST Project (http://www.lsst.org/).
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the LSST License Statement and
20 * the GNU General Public License along with this program. If not,
21 * see <http://www.lsstcorp.org/LegalNotices/>.
22 */
23
24#ifndef LSST_MEAS_MODELFIT_Prior_h_INCLUDED
25#define LSST_MEAS_MODELFIT_Prior_h_INCLUDED
26
27#include "lsst/base.h"
30
31namespace lsst { namespace meas { namespace modelfit {
32
36class Prior {
37public:
38
39 std::string const & getTag() const { return _tag; }
40
48 ndarray::Array<Scalar const,1,1> const & nonlinear,
49 ndarray::Array<Scalar const,1,1> const & amplitudes
50 ) const = 0;
51
67 virtual void evaluateDerivatives(
68 ndarray::Array<Scalar const,1,1> const & nonlinear,
69 ndarray::Array<Scalar const,1,1> const & amplitudes,
70 ndarray::Array<Scalar,1,1> const & nonlinearGradient,
71 ndarray::Array<Scalar,1,1> const & amplitudeGradient,
72 ndarray::Array<Scalar,2,1> const & nonlinearHessian,
73 ndarray::Array<Scalar,2,1> const & amplitudeHessian,
74 ndarray::Array<Scalar,2,1> const & crossHessian
75 ) const = 0;
76
111 Vector const & gradient, Matrix const & hessian,
112 ndarray::Array<Scalar const,1,1> const & nonlinear
113 ) const = 0;
114
128 Vector const & gradient, Matrix const & hessian,
129 ndarray::Array<Scalar const,1,1> const & nonlinear,
130 ndarray::Array<Scalar,1,1> const & amplitudes
131 ) const = 0;
132
152 virtual void drawAmplitudes(
153 Vector const & gradient, Matrix const & hessian,
154 ndarray::Array<Scalar const,1,1> const & nonlinear,
155 afw::math::Random & rng,
156 ndarray::Array<Scalar,2,1> const & amplitudes,
157 ndarray::Array<Scalar,1,1> const & weights,
158 bool multiplyWeights=false
159 ) const = 0;
160
161 virtual ~Prior() {}
162
163 // No copying
164 Prior (const Prior&) = delete;
165 Prior& operator=(const Prior&) = delete;
166
167 // No moving
168 Prior (Prior&&) = delete;
169 Prior& operator=(Prior&&) = delete;
170
171protected:
172
173 explicit Prior(std::string const & tag="") : _tag(tag) {}
174
175private:
176 std::string _tag;
177};
178
179}}} // namespace lsst::meas::modelfit
180
181#endif // !LSST_MEAS_MODELFIT_Prior_h_INCLUDED
table::Key< table::Array< double > > amplitudes
Basic LSST definitions.
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition Random.h:57
Base class for Bayesian priors.
Definition Prior.h:36
virtual Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const =0
Return the -log amplitude integral of the prior*likelihood product.
virtual Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const =0
Compute the amplitude vector that maximizes the prior x likelihood product.
Prior & operator=(Prior &&)=delete
virtual Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const =0
Evaluate the prior at the given point in nonlinear and amplitude space.
Prior & operator=(const Prior &)=delete
std::string const & getTag() const
Definition Prior.h:39
virtual void drawAmplitudes(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const =0
Draw a set of Monte Carlo amplitude vectors.
virtual void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const =0
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space.
Prior(const Prior &)=delete
Prior(std::string const &tag="")
Definition Prior.h:173
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition common.h:46
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
Definition common.h:45
double Scalar
Typedefs to be used for probability and parameter values.
Definition common.h:44