LSST Applications 26.0.0,g0265f82a02+6660c170cc,g07994bdeae+30b05a742e,g0a0026dc87+17526d298f,g0a60f58ba1+17526d298f,g0e4bf8285c+96dd2c2ea9,g0ecae5effc+c266a536c8,g1e7d6db67d+6f7cb1f4bb,g26482f50c6+6346c0633c,g2bbee38e9b+6660c170cc,g2cc88a2952+0a4e78cd49,g3273194fdb+f6908454ef,g337abbeb29+6660c170cc,g337c41fc51+9a8f8f0815,g37c6e7c3d5+7bbafe9d37,g44018dc512+6660c170cc,g4a941329ef+4f7594a38e,g4c90b7bd52+5145c320d2,g58be5f913a+bea990ba40,g635b316a6c+8d6b3a3e56,g67924a670a+bfead8c487,g6ae5381d9b+81bc2a20b4,g93c4d6e787+26b17396bd,g98cecbdb62+ed2cb6d659,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga1e77700b3+99e9273977,gae46bcf261+6660c170cc,gb2715bf1a1+17526d298f,gc86a011abf+17526d298f,gcf0d15dbbd+96dd2c2ea9,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6660c170cc,ge23793e450+96dd2c2ea9,gf041782ebf+171108ac67
LSST Data Management Base Package
Loading...
Searching...
No Matches
diffimTools.py
Go to the documentation of this file.
1# This file is part of ip_diffim.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22__all__ = ["backgroundSubtract", "writeKernelCellSet", "sourceToFootprintList", "NbasisEvaluator"]
23
24# python
25import time
26import os
27from collections import Counter
28import numpy as np
29
30# all the c++ level classes and routines
31from . import diffimLib
32
33# all the other LSST packages
34import lsst.afw.geom as afwGeom
35import lsst.afw.image as afwImage
36import lsst.afw.table as afwTable
37import lsst.afw.detection as afwDetect
38import lsst.afw.math as afwMath
39import lsst.geom as geom
40import lsst.pex.config as pexConfig
41from lsst.utils.logging import getLogger
42from .makeKernelBasisList import makeKernelBasisList
43
44# Helper functions for ipDiffim; mostly viewing of results and writing
45# debugging info to disk.
46
47
50
51
52def makeFlatNoiseImage(mi, seedStat=afwMath.MAX):
53 img = mi.image
54 seed = int(10.*afwMath.makeStatistics(mi.image, seedStat).getValue() + 1)
55 rdm = afwMath.Random(afwMath.Random.MT19937, seed)
56 rdmImage = img.Factory(img.getDimensions())
57 afwMath.randomGaussianImage(rdmImage, rdm)
58 return rdmImage
59
60
62 """Return a Poisson noise image based on im
63
64 Parameters
65 ----------
67 image; the output image has the same dtype, dimensions, and shape
68 and its expectation value is the value of ``im`` at each pixel
69
70 Returns
71 -------
72 noiseIm : `lsst.afw.image.Image`
73 Newly constructed image instance, same type as ``im``.
74
75 Notes
76 -----
77 - Warning: This uses an undocumented numpy API (the documented API
78 uses a single float expectation value instead of an array).
79
80 - Uses numpy.random; you may wish to call numpy.random.seed first.
81 """
82 import numpy.random as rand
83 imArr = im.array
84 noiseIm = im.Factory(im.getBBox())
85 noiseArr = noiseIm.array
86
87 intNoiseArr = rand.poisson(np.where(np.isfinite(imArr), imArr, 0.0))
88
89 noiseArr[:, :] = intNoiseArr.astype(noiseArr.dtype)
90 return noiseIm
91
92
97
98
100 kCoeffs = ((1.0, 0.0, 0.0),
101 (0.005, -0.000001, 0.000001),
102 (0.005, 0.000004, 0.000004),
103 (-0.001, -0.000030, 0.000030),
104 (-0.001, 0.000015, 0.000015),
105 (-0.005, -0.000050, 0.000050))
106 return kCoeffs
107
108
109def makeFakeKernelSet(sizeCell=128, nCell=3,
110 deltaFunctionCounts=1.e4, tGaussianWidth=1.0,
111 addNoise=True, bgValue=100., display=False):
112 """Generate test template and science images with sources.
113
114 Parameters
115 ----------
116 sizeCell : `int`, optional
117 Size of the square spatial cells in pixels.
118 nCell : `int`, optional
119 Number of adjacent spatial cells in both direction in both images.
120 deltaFunctionCounts : `float`, optional
121 Flux value for the template image sources.
122 tGaussianWidth : `float`, optional
123 Sigma of the generated Gaussian PSF sources in the template image.
124 addNoise : `bool`, optional
125 If `True`, Poisson noise is added to both the generated template
126 and science images.
127 bgValue : `float`, optional
128 Background level to be added to the generated science image.
129 display : `bool`, optional
130 If `True` displays the generated template and science images by
132
133 Notes
134 -----
135 - The generated images consist of adjacent ``nCell x nCell`` cells, each
136 of pixel size ``sizeCell x sizeCell``.
137 - The sources in the science image are generated by convolving the
138 template by ``sKernel``. ``sKernel`` is a spatial `LinearCombinationKernel`
139 of hard wired kernel bases functions. The linear combination has first
140 order polynomial spatial dependence with polynomial parameters from ``fakeCoeffs()``.
141 - The template image sources are generated in the center of each spatial
142 cell from one pixel, set to `deltaFunctionCounts` counts, then convolved
143 by a 2D Gaussian with sigma of `tGaussianWidth` along each axis.
144 - The sources are also returned in ``kernelCellSet`` each source is "detected"
145 exactly at the center of a cell.
146
147 Returns
148 -------
150 Generated template image.
152 Generated science image.
154 The spatial kernel used to generate the sources in the science image.
155 kernelCellSet : `lsst.afw.math.SpatialCellSet`
156 Cell grid of `lsst.afw.math.SpatialCell` instances, containing
157 `lsst.ip.diffim.KernelCandidate` instances around all the generated sources
158 in the science image.
159 configFake : `lsst.ip.diffim.ImagePsfMatchConfig`
160 Config instance used in the image generation.
161 """
162 from . import imagePsfMatch
163 configFake = imagePsfMatch.ImagePsfMatchConfig()
164 configFake.kernel.name = "AL"
165 subconfigFake = configFake.kernel.active
166 subconfigFake.alardNGauss = 1
167 subconfigFake.alardSigGauss = [2.5, ]
168 subconfigFake.alardDegGauss = [2, ]
169 subconfigFake.sizeCellX = sizeCell
170 subconfigFake.sizeCellY = sizeCell
171 subconfigFake.spatialKernelOrder = 1
172 subconfigFake.spatialModelType = "polynomial"
173 subconfigFake.singleKernelClipping = False # variance is a hack
174 subconfigFake.spatialKernelClipping = False # variance is a hack
175 if bgValue > 0.0:
176 subconfigFake.fitForBackground = True
177
178 psFake = pexConfig.makePropertySet(subconfigFake)
179
180 basisList = makeKernelBasisList(subconfigFake)
181 kSize = subconfigFake.kernelSize
182
183 # This sets the final extent of each convolved delta function
184 gaussKernelWidth = sizeCell//2
185
186 # This sets the scale over which pixels are correlated in the
187 # spatial convolution; should be at least as big as the kernel you
188 # are trying to fit for
189 spatialKernelWidth = kSize
190
191 # Number of bad pixels due to convolutions
192 border = (gaussKernelWidth + spatialKernelWidth)//2
193
194 # Make a fake image with a matrix of delta functions
195 totalSize = nCell*sizeCell + 2*border
196 tim = afwImage.ImageF(geom.Extent2I(totalSize, totalSize))
197 for x in range(nCell):
198 for y in range(nCell):
199 tim[x*sizeCell + sizeCell//2 + border - 1,
200 y*sizeCell + sizeCell//2 + border - 1,
201 afwImage.LOCAL] = deltaFunctionCounts
202
203 # Turn this into stars with a narrow width; conserve counts
204 gaussFunction = afwMath.GaussianFunction2D(tGaussianWidth, tGaussianWidth)
205 gaussKernel = afwMath.AnalyticKernel(gaussKernelWidth, gaussKernelWidth, gaussFunction)
206 cim = afwImage.ImageF(tim.getDimensions())
207 convolutionControl = afwMath.ConvolutionControl()
208 convolutionControl.setDoNormalize(True)
209 afwMath.convolve(cim, tim, gaussKernel, convolutionControl)
210 tim = cim
211
212 # Trim off border pixels
213 bbox = gaussKernel.shrinkBBox(tim.getBBox(afwImage.LOCAL))
214 tim = afwImage.ImageF(tim, bbox, afwImage.LOCAL)
215
216 # Now make a science image which is this convolved with some
217 # spatial function. Use input basis list.
218 polyFunc = afwMath.PolynomialFunction2D(1)
219 kCoeffs = fakeCoeffs()
220 nToUse = min(len(kCoeffs), len(basisList))
221
222 # Make the full convolved science image
223 sKernel = afwMath.LinearCombinationKernel(basisList[:nToUse], polyFunc)
224 sKernel.setSpatialParameters(kCoeffs[:nToUse])
225 sim = afwImage.ImageF(tim.getDimensions())
226 convolutionControl = afwMath.ConvolutionControl()
227 convolutionControl.setDoNormalize(True)
228 afwMath.convolve(sim, tim, sKernel, convolutionControl)
229
230 # Get the good subregion
231 bbox = sKernel.shrinkBBox(sim.getBBox(afwImage.LOCAL))
232
233 # Add background
234 sim += bgValue
235
236 # Watch out for negative values
237 tim += 2*np.abs(np.min(tim.array))
238
239 # Add noise?
240 if addNoise:
241 sim = makePoissonNoiseImage(sim)
242 tim = makePoissonNoiseImage(tim)
243
244 # And turn into MaskedImages
245 sim = afwImage.ImageF(sim, bbox, afwImage.LOCAL)
246 svar = afwImage.ImageF(sim, True)
247 smask = afwImage.Mask(sim.getDimensions())
248 smask.set(0x0)
249 sMi = afwImage.MaskedImageF(sim, smask, svar)
250
251 tim = afwImage.ImageF(tim, bbox, afwImage.LOCAL)
252 tvar = afwImage.ImageF(tim, True)
253 tmask = afwImage.Mask(tim.getDimensions())
254 tmask.set(0x0)
255 tMi = afwImage.MaskedImageF(tim, tmask, tvar)
256
257 if display:
258 import lsst.afw.display as afwDisplay
259 afwDisplay.Display(frame=1).mtv(tMi)
260 afwDisplay.Display(frame=2).mtv(sMi)
261
262 # Finally, make a kernelSet from these 2 images
263 kernelCellSet = afwMath.SpatialCellSet(geom.Box2I(geom.Point2I(0, 0),
264 geom.Extent2I(sizeCell*nCell,
265 sizeCell*nCell)),
266 sizeCell,
267 sizeCell)
268 stampHalfWidth = 2*kSize
269 for x in range(nCell):
270 for y in range(nCell):
271 xCoord = x*sizeCell + sizeCell//2
272 yCoord = y*sizeCell + sizeCell//2
273 p0 = geom.Point2I(xCoord - stampHalfWidth,
274 yCoord - stampHalfWidth)
275 p1 = geom.Point2I(xCoord + stampHalfWidth,
276 yCoord + stampHalfWidth)
277 bbox = geom.Box2I(p0, p1)
278 tsi = afwImage.MaskedImageF(tMi, bbox, origin=afwImage.LOCAL)
279 ssi = afwImage.MaskedImageF(sMi, bbox, origin=afwImage.LOCAL)
280
281 kc = diffimLib.makeKernelCandidate(xCoord, yCoord, tsi, ssi, psFake)
282 kernelCellSet.insertCandidate(kc)
283
284 tMi.setXY0(0, 0)
285 sMi.setXY0(0, 0)
286 return tMi, sMi, sKernel, kernelCellSet, configFake
287
288
289
292
293def backgroundSubtract(config, maskedImages):
294 """Subtract the background from masked images.
295
296 Parameters
297 ----------
298 config : TODO: DM-17458
299 TODO: DM-17458
300 maskedImages : `list` of `lsst.afw.image.MaskedImage`
301 TODO: DM-17458
302
303 Returns
304 -------
305 TODO: DM-17458
306 TODO: DM-17458
307 """
308 backgrounds = []
309 t0 = time.time()
310 algorithm = config.algorithm
311 binsize = config.binSize
312 undersample = config.undersampleStyle
313 bctrl = afwMath.BackgroundControl(algorithm)
314 bctrl.setUndersampleStyle(undersample)
315 for maskedImage in maskedImages:
316 bctrl.setNxSample(maskedImage.getWidth()//binsize + 1)
317 bctrl.setNySample(maskedImage.getHeight()//binsize + 1)
318 image = maskedImage.image
319 backobj = afwMath.makeBackground(image, bctrl)
320
321 image -= backobj.getImageF()
322 backgrounds.append(backobj.getImageF())
323 del backobj
324
325 t1 = time.time()
326 logger = getLogger("lsst.ip.diffim.backgroundSubtract")
327 logger.debug("Total time for background subtraction : %.2f s", (t1 - t0))
328 return backgrounds
329
330
333
334
335def writeKernelCellSet(kernelCellSet, psfMatchingKernel, backgroundModel, outdir):
336 """TODO: DM-17458
337
338 Parameters
339 ----------
340 kernelCellSet : TODO: DM-17458
341 TODO: DM-17458
342 psfMatchingKernel : TODO: DM-17458
343 TODO: DM-17458
344 backgroundModel : TODO: DM-17458
345 TODO: DM-17458
346 outdir : TODO: DM-17458
347 TODO: DM-17458
348 """
349 if not os.path.isdir(outdir):
350 os.makedirs(outdir)
351
352 for cell in kernelCellSet.getCellList():
353 for cand in cell.begin(False): # False = include bad candidates
354 if cand.getStatus() == afwMath.SpatialCellCandidate.GOOD:
355 xCand = int(cand.getXCenter())
356 yCand = int(cand.getYCenter())
357 idCand = cand.getId()
358 diffIm = cand.getDifferenceImage(diffimLib.KernelCandidateF.ORIG)
359 kernel = cand.getKernelImage(diffimLib.KernelCandidateF.ORIG)
360 diffIm.writeFits(os.path.join(outdir, 'diffim_c%d_x%d_y%d.fits' % (idCand, xCand, yCand)))
361 kernel.writeFits(os.path.join(outdir, 'kernel_c%d_x%d_y%d.fits' % (idCand, xCand, yCand)))
362
363 # Diffim from spatial model
364 ski = afwImage.ImageD(kernel.getDimensions())
365 psfMatchingKernel.computeImage(ski, False, xCand, yCand)
366 sk = afwMath.FixedKernel(ski)
367 sbg = backgroundModel(xCand, yCand)
368 sdmi = cand.getDifferenceImage(sk, sbg)
369 sdmi.writeFits(os.path.join(outdir, 'sdiffim_c%d_x%d_y%d.fits' % (idCand, xCand, yCand)))
370
371
374
375
376def sourceToFootprintList(candidateInList, templateExposure, scienceExposure, kernelSize, config, log):
377 """Convert a list of sources for the PSF-matching Kernel to Footprints.
378
379 Parameters
380 ----------
381 candidateInList : TODO: DM-17458
382 Input list of Sources
383 templateExposure : TODO: DM-17458
384 Template image, to be checked for Mask bits in Source Footprint
385 scienceExposure : TODO: DM-17458
386 Science image, to be checked for Mask bits in Source Footprint
387 kernelSize : TODO: DM-17458
388 TODO: DM-17458
389 config : TODO: DM-17458
390 Config that defines the Mask planes that indicate an invalid Source and Bbox grow radius
391 log : TODO: DM-17458
392 Log for output
393
394 Returns
395 -------
396 candidateOutList : `list`
397 a list of dicts having a "source" and "footprint" field, to be used for Psf-matching
398
399 Raises
400 ------
401 RuntimeError
402 TODO: DM-17458
403
404 Notes
405 -----
406 Takes an input list of Sources that were selected to constrain
407 the Psf-matching Kernel and turns them into a List of Footprints,
408 which are used to seed a set of KernelCandidates. The function
409 checks both the template and science image for masked pixels,
410 rejecting the Source if certain Mask bits (defined in config) are
411 set within the Footprint.
412 """
413
414 candidateOutList = []
415 fsb = diffimLib.FindSetBitsU()
416 badBitMask = 0
417 for mp in config.badMaskPlanes:
418 badBitMask |= afwImage.Mask.getPlaneBitMask(mp)
419 bbox = scienceExposure.getBBox()
420
421 # Size to grow Sources
422 if config.scaleByFwhm:
423 fpGrowPix = int(config.fpGrowKernelScaling*kernelSize + 0.5)
424 else:
425 fpGrowPix = config.fpGrowPix
426 log.info("Growing %d kernel candidate stars by %d pixels", len(candidateInList), fpGrowPix)
427
428 for kernelCandidate in candidateInList:
429 if not type(kernelCandidate) == afwTable.SourceRecord:
430 raise RuntimeError("Candiate not of type afwTable.SourceRecord")
431 bm1 = 0
432 bm2 = 0
433 center = geom.Point2I(scienceExposure.getWcs().skyToPixel(kernelCandidate.getCoord()))
434 if center[0] < bbox.getMinX() or center[0] > bbox.getMaxX():
435 continue
436 if center[1] < bbox.getMinY() or center[1] > bbox.getMaxY():
437 continue
438
439 xmin = center[0] - fpGrowPix
440 xmax = center[0] + fpGrowPix
441 ymin = center[1] - fpGrowPix
442 ymax = center[1] + fpGrowPix
443
444 # Keep object centered
445 if (xmin - bbox.getMinX()) < 0:
446 xmax += (xmin - bbox.getMinX())
447 xmin -= (xmin - bbox.getMinX())
448 if (ymin - bbox.getMinY()) < 0:
449 ymax += (ymin - bbox.getMinY())
450 ymin -= (ymin - bbox.getMinY())
451 if (bbox.getMaxX() - xmax) < 0:
452 xmin -= (bbox.getMaxX() - xmax)
453 xmax += (bbox.getMaxX() - xmax)
454 if (bbox.getMaxY() - ymax) < 0:
455 ymin -= (bbox.getMaxY() - ymax)
456 ymax += (bbox.getMaxY() - ymax)
457 if xmin > xmax or ymin > ymax:
458 continue
459
460 kbbox = geom.Box2I(geom.Point2I(xmin, ymin), geom.Point2I(xmax, ymax))
461 try:
462 fsb.apply(afwImage.MaskedImageF(templateExposure.maskedImage, kbbox, deep=False).getMask())
463 bm1 = fsb.getBits()
464 fsb.apply(afwImage.MaskedImageF(scienceExposure.maskedImage, kbbox, deep=False).getMask())
465 bm2 = fsb.getBits()
466 except Exception:
467 pass
468 else:
469 if not ((bm1 & badBitMask) or (bm2 & badBitMask)):
470 candidateOutList.append({'source': kernelCandidate,
471 'footprint': afwDetect.Footprint(afwGeom.SpanSet(kbbox))})
472 log.info("Selected %d / %d sources for KernelCandidacy", len(candidateOutList), len(candidateInList))
473 return candidateOutList
474
475
476def sourceTableToCandidateList(sourceTable, templateExposure, scienceExposure, kConfig, dConfig, log,
477 basisList, doBuild=False):
478 """Convert a list of Sources into KernelCandidates.
479
480 The KernelCandidates are used for fitting the Psf-matching kernel.
481
482 Parameters
483 ----------
484 sourceTable : TODO: DM-17458
485 TODO: DM-17458
486 templateExposure : TODO: DM-17458
487 TODO: DM-17458
488 scienceExposure : TODO: DM-17458
489 TODO: DM-17458
490 kConfig : TODO: DM-17458
491 TODO: DM-17458
492 dConfig : TODO: DM-17458
493 TODO: DM-17458
494 log : TODO: DM-17458
495 TODO: DM-17458
496 basisList : TODO: DM-17458
497 TODO: DM-17458
498 doBuild : `bool`, optional
499 TODO: DM-17458
500
501 Returns
502 -------
503 TODO: DM-17458
504 TODO: DM-17458
505 """
506 kernelSize = basisList[0].getWidth()
507 footprintList = sourceToFootprintList(list(sourceTable), templateExposure, scienceExposure,
508 kernelSize, dConfig, log)
509 candList = []
510
511 if doBuild and not basisList:
512 doBuild = False
513 else:
514 ps = pexConfig.makePropertySet(kConfig)
515 visitor = diffimLib.BuildSingleKernelVisitorF(basisList, ps)
516
517 ps = pexConfig.makePropertySet(kConfig)
518 for cand in footprintList:
519 bbox = cand['footprint'].getBBox()
520 tmi = afwImage.MaskedImageF(templateExposure.maskedImage, bbox)
521 smi = afwImage.MaskedImageF(scienceExposure.maskedImage, bbox)
522 kCand = diffimLib.makeKernelCandidate(cand['source'], tmi, smi, ps)
523 if doBuild:
524 visitor.processCandidate(kCand)
525 kCand.setStatus(afwMath.SpatialCellCandidate.UNKNOWN)
526 candList.append(kCand)
527 return candList
528
529
530
533
534
536 """A functor to evaluate the Bayesian Information Criterion for the number of basis sets
537 going into the kernel fitting"""
538
539 def __init__(self, psfMatchConfig, psfFwhmPixTc, psfFwhmPixTnc):
540 self.psfMatchConfig = psfMatchConfig
541 self.psfFwhmPixTc = psfFwhmPixTc
542 self.psfFwhmPixTnc = psfFwhmPixTnc
543 if not self.psfMatchConfig.kernelBasisSet == "alard-lupton":
544 raise RuntimeError("BIC only implemnted for AL (alard lupton) basis")
545
546 def __call__(self, kernelCellSet, log):
547 d1, d2, d3 = self.psfMatchConfig.alardDegGauss
548 bicArray = {}
549 for d1i in range(1, d1 + 1):
550 for d2i in range(1, d2 + 1):
551 for d3i in range(1, d3 + 1):
552 dList = [d1i, d2i, d3i]
553 bicConfig = type(self.psfMatchConfig)(self.psfMatchConfig, alardDegGauss=dList)
554 kList = makeKernelBasisList(bicConfig, self.psfFwhmPixTc, self.psfFwhmPixTnc)
555 k = len(kList)
556 visitor = diffimLib.BuildSingleKernelVisitorF(kList,
557 pexConfig.makePropertySet(bicConfig))
558 visitor.setSkipBuilt(False)
559 kernelCellSet.visitCandidates(visitor, bicConfig.nStarPerCell)
560
561 for cell in kernelCellSet.getCellList():
562 for cand in cell.begin(False): # False = include bad candidates
563 if cand.getStatus() != afwMath.SpatialCellCandidate.GOOD:
564 continue
565 diffIm = cand.getDifferenceImage(diffimLib.KernelCandidateF.RECENT)
566 bbox = cand.getKernel(diffimLib.KernelCandidateF.RECENT).shrinkBBox(
567 diffIm.getBBox(afwImage.LOCAL))
568 diffIm = type(diffIm)(diffIm, bbox, True)
569 chi2 = diffIm.image.array**2/diffIm.variance.array
570 n = chi2.shape[0]*chi2.shape[1]
571 bic = np.sum(chi2) + k*np.log(n)
572 if cand.getId() not in bicArray:
573 bicArray[cand.getId()] = {}
574 bicArray[cand.getId()][(d1i, d2i, d3i)] = bic
575
576 bestConfigs = []
577 for candId in bicArray:
578 cconfig, cvals = list(bicArray[candId].keys()), list(bicArray[candId].values())
579 idx = np.argsort(cvals)
580 bestConfig = cconfig[idx[0]]
581 bestConfigs.append(bestConfig)
582
583 counter = Counter(bestConfigs).most_common(3)
584 log.info("B.I.C. prefers basis complexity %s %d times; %s %d times; %s %d times",
585 counter[0][0], counter[0][1],
586 counter[1][0], counter[1][1],
587 counter[2][0], counter[2][1])
588 return counter[0][0], counter[1][0], counter[2][0]
int min
table::Key< int > type
Definition Detector.cc:163
table::Key< std::string > object
Definition VisitInfo.cc:232
Class to describe the properties of a detected object from an image.
Definition Footprint.h:63
A compact representation of a collection of pixels.
Definition SpanSet.h:78
A class to represent a 2-dimensional array of pixels.
Definition Image.h:51
Represent a 2-dimensional array of bitmask pixels.
Definition Mask.h:77
A class to manipulate images, masks, and variance as a single object.
Definition MaskedImage.h:74
A kernel described by a function.
Definition Kernel.h:535
Pass parameters to a Background object.
Definition Background.h:56
Parameters to control convolution.
A kernel created from an Image.
Definition Kernel.h:471
A kernel that is a linear combination of fixed basis kernels.
Definition Kernel.h:704
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition Random.h:57
Class to ensure constraints for spatial modeling.
A collection of SpatialCells covering an entire image.
Record class that contains measurements made on a single exposure.
Definition Source.h:78
An integer coordinate rectangle.
Definition Box.h:55
Class stored in SpatialCells for spatial Kernel fitting.
__init__(self, psfMatchConfig, psfFwhmPixTc, psfFwhmPixTnc)
daf::base::PropertyList * list
Definition fits.cc:928
std::shared_ptr< Background > makeBackground(ImageT const &img, BackgroundControl const &bgCtrl)
A convenience function that uses function overloading to make the correct type of Background.
Definition Background.h:526
void randomGaussianImage(ImageT *image, Random &rand)
Set image to random numbers with a gaussian N(0, 1) distribution.
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)
Definition Statistics.h:361
void convolve(OutImageT &convolvedImage, InImageT const &inImage, KernelT const &kernel, ConvolutionControl const &convolutionControl=ConvolutionControl())
Convolve an Image or MaskedImage with a Kernel, setting pixels of an existing output image.
writeKernelCellSet(kernelCellSet, psfMatchingKernel, backgroundModel, outdir)
More coarse debugging.
backgroundSubtract(config, maskedImages)
Background subtraction for ip_diffim.
makeFakeKernelSet(sizeCell=128, nCell=3, deltaFunctionCounts=1.e4, tGaussianWidth=1.0, addNoise=True, bgValue=100., display=False)
makeFlatNoiseImage(mi, seedStat=afwMath.MAX)
Add noise.
sourceToFootprintList(candidateInList, templateExposure, scienceExposure, kernelSize, config, log)
Converting types.
sourceTableToCandidateList(sourceTable, templateExposure, scienceExposure, kConfig, dConfig, log, basisList, doBuild=False)
fakeCoeffs()
Make fake images for testing; one is a delta function (or narrow gaussian) and the other is a convolu...