LSST Applications 26.0.0,g0265f82a02+6660c170cc,g07994bdeae+30b05a742e,g0a0026dc87+17526d298f,g0a60f58ba1+17526d298f,g0e4bf8285c+96dd2c2ea9,g0ecae5effc+c266a536c8,g1e7d6db67d+6f7cb1f4bb,g26482f50c6+6346c0633c,g2bbee38e9b+6660c170cc,g2cc88a2952+0a4e78cd49,g3273194fdb+f6908454ef,g337abbeb29+6660c170cc,g337c41fc51+9a8f8f0815,g37c6e7c3d5+7bbafe9d37,g44018dc512+6660c170cc,g4a941329ef+4f7594a38e,g4c90b7bd52+5145c320d2,g58be5f913a+bea990ba40,g635b316a6c+8d6b3a3e56,g67924a670a+bfead8c487,g6ae5381d9b+81bc2a20b4,g93c4d6e787+26b17396bd,g98cecbdb62+ed2cb6d659,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga1e77700b3+99e9273977,gae46bcf261+6660c170cc,gb2715bf1a1+17526d298f,gc86a011abf+17526d298f,gcf0d15dbbd+96dd2c2ea9,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6660c170cc,ge23793e450+96dd2c2ea9,gf041782ebf+171108ac67
LSST Data Management Base Package
Loading...
Searching...
No Matches
isrMock.py
Go to the documentation of this file.
1# This file is part of ip_isr.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22__all__ = ["IsrMockConfig", "IsrMock", "RawMock", "TrimmedRawMock", "RawDictMock",
23 "CalibratedRawMock", "MasterMock",
24 "BiasMock", "DarkMock", "FlatMock", "FringeMock", "UntrimmedFringeMock",
25 "BfKernelMock", "DefectMock", "CrosstalkCoeffMock", "TransmissionMock",
26 "MockDataContainer", "MockFringeContainer"]
27
28import copy
29import numpy as np
30import tempfile
31
32import lsst.geom
33import lsst.afw.geom as afwGeom
34import lsst.afw.image as afwImage
35
36import lsst.afw.cameraGeom.utils as afwUtils
37import lsst.afw.cameraGeom.testUtils as afwTestUtils
38import lsst.pex.config as pexConfig
39import lsst.pipe.base as pipeBase
40from .crosstalk import CrosstalkCalib
41from .defects import Defects
42
43
44class IsrMockConfig(pexConfig.Config):
45 """Configuration parameters for isrMock.
46
47 These parameters produce generic fixed position signals from
48 various sources, and combine them in a way that matches how those
49 signals are combined to create real data. The camera used is the
50 test camera defined by the afwUtils code.
51 """
52 # Detector parameters. "Exposure" parameters.
53 isLsstLike = pexConfig.Field(
54 dtype=bool,
55 default=False,
56 doc="If True, products have one raw image per amplifier, otherwise, one raw image per detector.",
57 )
58 plateScale = pexConfig.Field(
59 dtype=float,
60 default=20.0,
61 doc="Plate scale used in constructing mock camera.",
62 )
63 radialDistortion = pexConfig.Field(
64 dtype=float,
65 default=0.925,
66 doc="Radial distortion term used in constructing mock camera.",
67 )
68 isTrimmed = pexConfig.Field(
69 dtype=bool,
70 default=True,
71 doc="If True, amplifiers have been trimmed and mosaicked to remove regions outside the data BBox.",
72 )
73 detectorIndex = pexConfig.Field(
74 dtype=int,
75 default=20,
76 doc="Index for the detector to use. The default value uses a standard 2x4 array of amps.",
77 )
78 rngSeed = pexConfig.Field(
79 dtype=int,
80 default=20000913,
81 doc="Seed for random number generator used to add noise.",
82 )
83 # TODO: DM-18345 Check that mocks scale correctly when gain != 1.0
84 gain = pexConfig.Field(
85 dtype=float,
86 default=1.0,
87 doc="Gain for simulated data in e^-/DN.",
88 )
89 readNoise = pexConfig.Field(
90 dtype=float,
91 default=5.0,
92 doc="Read noise of the detector in e-.",
93 )
94 expTime = pexConfig.Field(
95 dtype=float,
96 default=5.0,
97 doc="Exposure time for simulated data.",
98 )
99
100 # Signal parameters
101 skyLevel = pexConfig.Field(
102 dtype=float,
103 default=1000.0,
104 doc="Background contribution to be generated from 'the sky' in DN.",
105 )
106 sourceFlux = pexConfig.ListField(
107 dtype=float,
108 default=[45000.0],
109 doc="Peak flux level (in DN) of simulated 'astronomical sources'.",
110 )
111 sourceAmp = pexConfig.ListField(
112 dtype=int,
113 default=[0],
114 doc="Amplifier to place simulated 'astronomical sources'.",
115 )
116 sourceX = pexConfig.ListField(
117 dtype=float,
118 default=[50.0],
119 doc="Peak position (in amplifier coordinates) of simulated 'astronomical sources'.",
120 )
121 sourceY = pexConfig.ListField(
122 dtype=float,
123 default=[25.0],
124 doc="Peak position (in amplifier coordinates) of simulated 'astronomical sources'.",
125 )
126 overscanScale = pexConfig.Field(
127 dtype=float,
128 default=100.0,
129 doc="Amplitude (in DN) of the ramp function to add to overscan data.",
130 )
131 biasLevel = pexConfig.Field(
132 dtype=float,
133 default=8000.0,
134 doc="Background contribution to be generated from the bias offset in DN.",
135 )
136 darkRate = pexConfig.Field(
137 dtype=float,
138 default=5.0,
139 doc="Background level contribution (in e-/s) to be generated from dark current.",
140 )
141 darkTime = pexConfig.Field(
142 dtype=float,
143 default=5.0,
144 doc="Exposure time for the dark current contribution.",
145 )
146 flatDrop = pexConfig.Field(
147 dtype=float,
148 default=0.1,
149 doc="Fractional flux drop due to flat from center to edge of detector along x-axis.",
150 )
151 fringeScale = pexConfig.ListField(
152 dtype=float,
153 default=[200.0],
154 doc="Peak fluxes for the components of the fringe ripple in DN.",
155 )
156 fringeX0 = pexConfig.ListField(
157 dtype=float,
158 default=[-100],
159 doc="Center position for the fringe ripples.",
160 )
161 fringeY0 = pexConfig.ListField(
162 dtype=float,
163 default=[-0],
164 doc="Center position for the fringe ripples.",
165 )
166
167 # Inclusion parameters
168 doAddSky = pexConfig.Field(
169 dtype=bool,
170 default=True,
171 doc="Apply 'sky' signal to output image.",
172 )
173 doAddSource = pexConfig.Field(
174 dtype=bool,
175 default=True,
176 doc="Add simulated source to output image.",
177 )
178 doAddCrosstalk = pexConfig.Field(
179 dtype=bool,
180 default=False,
181 doc="Apply simulated crosstalk to output image. This cannot be corrected by ISR, "
182 "as detector.hasCrosstalk()==False.",
183 )
184 doAddOverscan = pexConfig.Field(
185 dtype=bool,
186 default=True,
187 doc="If untrimmed, add overscan ramp to overscan and data regions.",
188 )
189 doAddBias = pexConfig.Field(
190 dtype=bool,
191 default=True,
192 doc="Add bias signal to data.",
193 )
194 doAddDark = pexConfig.Field(
195 dtype=bool,
196 default=True,
197 doc="Add dark signal to data.",
198 )
199 doAddFlat = pexConfig.Field(
200 dtype=bool,
201 default=True,
202 doc="Add flat signal to data.",
203 )
204 doAddFringe = pexConfig.Field(
205 dtype=bool,
206 default=True,
207 doc="Add fringe signal to data.",
208 )
209
210 # Datasets to create and return instead of generating an image.
211 doTransmissionCurve = pexConfig.Field(
212 dtype=bool,
213 default=False,
214 doc="Return a simulated transmission curve.",
215 )
216 doDefects = pexConfig.Field(
217 dtype=bool,
218 default=False,
219 doc="Return a simulated defect list.",
220 )
221 doBrighterFatter = pexConfig.Field(
222 dtype=bool,
223 default=False,
224 doc="Return a simulated brighter-fatter kernel.",
225 )
226 doCrosstalkCoeffs = pexConfig.Field(
227 dtype=bool,
228 default=False,
229 doc="Return the matrix of crosstalk coefficients.",
230 )
231 doDataRef = pexConfig.Field(
232 dtype=bool,
233 default=False,
234 doc="Return a simulated gen2 butler dataRef.",
235 )
236 doGenerateImage = pexConfig.Field(
237 dtype=bool,
238 default=False,
239 doc="Return the generated output image if True.",
240 )
241 doGenerateData = pexConfig.Field(
242 dtype=bool,
243 default=False,
244 doc="Return a non-image data structure if True.",
245 )
246 doGenerateAmpDict = pexConfig.Field(
247 dtype=bool,
248 default=False,
249 doc="Return a dict of exposure amplifiers instead of an afwImage.Exposure.",
250 )
251
252
253class IsrMock(pipeBase.Task):
254 """Class to generate consistent mock images for ISR testing.
255
256 ISR testing currently relies on one-off fake images that do not
257 accurately mimic the full set of detector effects. This class
258 uses the test camera/detector/amplifier structure defined in
259 `lsst.afw.cameraGeom.testUtils` to avoid making the test data
260 dependent on any of the actual obs package formats.
261 """
262 ConfigClass = IsrMockConfig
263 _DefaultName = "isrMock"
264
265 def __init__(self, **kwargs):
266 super().__init__(**kwargs)
267 self.rng = np.random.RandomState(self.config.rngSeed)
268 self.crosstalkCoeffs = np.array([[0.0, 0.0, 0.0, 0.0, 0.0, -1e-3, 0.0, 0.0],
269 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
270 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
271 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
272 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
273 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
274 [1e-2, 0.0, 0.0, 2.2e-2, 0.0, 0.0, 0.0, 0.0],
275 [1e-2, 5e-3, 5e-4, 3e-3, 4e-2, 5e-3, 5e-3, 0.0]])
276
277 self.bfKernel = np.array([[1., 4., 7., 4., 1.],
278 [4., 16., 26., 16., 4.],
279 [7., 26., 41., 26., 7.],
280 [4., 16., 26., 16., 4.],
281 [1., 4., 7., 4., 1.]]) / 273.0
282
283 def run(self):
284 """Generate a mock ISR product, and return it.
285
286 Returns
287 -------
289 Simulated ISR image with signals added.
290 dataProduct :
291 Simulated ISR data products.
292 None :
293 Returned if no valid configuration was found.
294
295 Raises
296 ------
297 RuntimeError
298 Raised if both doGenerateImage and doGenerateData are specified.
299 """
300 if self.config.doGenerateImage and self.config.doGenerateData:
301 raise RuntimeError("Only one of doGenerateImage and doGenerateData may be specified.")
302 elif self.config.doGenerateImage:
303 return self.makeImage()
304 elif self.config.doGenerateData:
305 return self.makeData()
306 else:
307 return None
308
309 def makeData(self):
310 """Generate simulated ISR data.
311
312 Currently, only the class defined crosstalk coefficient
313 matrix, brighter-fatter kernel, a constant unity transmission
314 curve, or a simple single-entry defect list can be generated.
315
316 Returns
317 -------
318 dataProduct :
319 Simulated ISR data product.
320 """
321 if sum(map(bool, [self.config.doBrighterFatter,
322 self.config.doDefects,
323 self.config.doTransmissionCurve,
324 self.config.doCrosstalkCoeffs])) != 1:
325 raise RuntimeError("Only one data product can be generated at a time.")
326 elif self.config.doBrighterFatter is True:
327 return self.makeBfKernel()
328 elif self.config.doDefects is True:
329 return self.makeDefectList()
330 elif self.config.doTransmissionCurve is True:
331 return self.makeTransmissionCurve()
332 elif self.config.doCrosstalkCoeffs is True:
333 return self.crosstalkCoeffs
334 else:
335 return None
336
337 def makeBfKernel(self):
338 """Generate a simple Gaussian brighter-fatter kernel.
339
340 Returns
341 -------
342 kernel : `numpy.ndarray`
343 Simulated brighter-fatter kernel.
344 """
345 return self.bfKernel
346
347 def makeDefectList(self):
348 """Generate a simple single-entry defect list.
349
350 Returns
351 -------
352 defectList : `lsst.meas.algorithms.Defects`
353 Simulated defect list
354 """
356 lsst.geom.Extent2I(40, 50))])
357
359 """Generate the simulated crosstalk coefficients.
360
361 Returns
362 -------
363 coeffs : `numpy.ndarray`
364 Simulated crosstalk coefficients.
365 """
366
367 return self.crosstalkCoeffs
368
370 """Generate a simulated flat transmission curve.
371
372 Returns
373 -------
374 transmission : `lsst.afw.image.TransmissionCurve`
375 Simulated transmission curve.
376 """
377
378 return afwImage.TransmissionCurve.makeIdentity()
379
380 def makeImage(self):
381 """Generate a simulated ISR image.
382
383 Returns
384 -------
385 exposure : `lsst.afw.image.Exposure` or `dict`
386 Simulated ISR image data.
387
388 Notes
389 -----
390 This method currently constructs a "raw" data image by:
391
392 * Generating a simulated sky with noise
393 * Adding a single Gaussian "star"
394 * Adding the fringe signal
395 * Multiplying the frame by the simulated flat
396 * Adding dark current (and noise)
397 * Adding a bias offset (and noise)
398 * Adding an overscan gradient parallel to the pixel y-axis
399 * Simulating crosstalk by adding a scaled version of each
400 amplifier to each other amplifier.
401
402 The exposure with image data constructed this way is in one of
403 three formats.
404
405 * A single image, with overscan and prescan regions retained
406 * A single image, with overscan and prescan regions trimmed
407 * A `dict`, containing the amplifer data indexed by the
408 amplifier name.
409
410 The nonlinearity, CTE, and brighter fatter are currently not
411 implemented.
412
413 Note that this method generates an image in the reverse
414 direction as the ISR processing, as the output image here has
415 had a series of instrument effects added to an idealized
416 exposure.
417 """
418 exposure = self.getExposure()
419
420 for idx, amp in enumerate(exposure.getDetector()):
421 bbox = None
422 if self.config.isTrimmed is True:
423 bbox = amp.getBBox()
424 else:
425 bbox = amp.getRawDataBBox()
426
427 ampData = exposure.image[bbox]
428
429 if self.config.doAddSky is True:
430 self.amplifierAddNoise(ampData, self.config.skyLevel, np.sqrt(self.config.skyLevel))
431
432 if self.config.doAddSource is True:
433 for sourceAmp, sourceFlux, sourceX, sourceY in zip(self.config.sourceAmp,
434 self.config.sourceFlux,
435 self.config.sourceX,
436 self.config.sourceY):
437 if idx == sourceAmp:
438 self.amplifierAddSource(ampData, sourceFlux, sourceX, sourceY)
439
440 if self.config.doAddFringe is True:
441 self.amplifierAddFringe(amp, ampData, np.array(self.config.fringeScale),
442 x0=np.array(self.config.fringeX0),
443 y0=np.array(self.config.fringeY0))
444
445 if self.config.doAddFlat is True:
446 if ampData.getArray().sum() == 0.0:
447 self.amplifierAddNoise(ampData, 1.0, 0.0)
448 u0 = exposure.getDimensions().getX()
449 v0 = exposure.getDimensions().getY()
450 self.amplifierMultiplyFlat(amp, ampData, self.config.flatDrop, u0=u0, v0=v0)
451
452 if self.config.doAddDark is True:
453 self.amplifierAddNoise(ampData,
454 self.config.darkRate * self.config.darkTime / self.config.gain,
455 np.sqrt(self.config.darkRate
456 * self.config.darkTime / self.config.gain))
457
458 if self.config.doAddCrosstalk is True:
459 ctCalib = CrosstalkCalib()
460 for idxS, ampS in enumerate(exposure.getDetector()):
461 for idxT, ampT in enumerate(exposure.getDetector()):
462 ampDataT = exposure.image[ampT.getBBox()
463 if self.config.isTrimmed else ampT.getRawDataBBox()]
464 outAmp = ctCalib.extractAmp(exposure.getImage(), ampS, ampT,
465 isTrimmed=self.config.isTrimmed)
466 self.amplifierAddCT(outAmp, ampDataT, self.crosstalkCoeffs[idxS][idxT])
467
468 for amp in exposure.getDetector():
469 bbox = None
470 if self.config.isTrimmed is True:
471 bbox = amp.getBBox()
472 else:
473 bbox = amp.getRawDataBBox()
474
475 ampData = exposure.image[bbox]
476
477 if self.config.doAddBias is True:
478 self.amplifierAddNoise(ampData, self.config.biasLevel,
479 self.config.readNoise / self.config.gain)
480
481 if self.config.doAddOverscan is True:
482 oscanBBox = amp.getRawHorizontalOverscanBBox()
483 oscanData = exposure.image[oscanBBox]
484 self.amplifierAddNoise(oscanData, self.config.biasLevel,
485 self.config.readNoise / self.config.gain)
486
487 self.amplifierAddYGradient(ampData, -1.0 * self.config.overscanScale,
488 1.0 * self.config.overscanScale)
489 self.amplifierAddYGradient(oscanData, -1.0 * self.config.overscanScale,
490 1.0 * self.config.overscanScale)
491
492 if self.config.doGenerateAmpDict is True:
493 expDict = dict()
494 for amp in exposure.getDetector():
495 expDict[amp.getName()] = exposure
496 return expDict
497 else:
498 return exposure
499
500 # afw primatives to construct the image structure
501 def getCamera(self):
502 """Construct a test camera object.
503
504 Returns
505 -------
506 camera : `lsst.afw.cameraGeom.camera`
507 Test camera.
508 """
509 cameraWrapper = afwTestUtils.CameraWrapper(
510 plateScale=self.config.plateScale,
511 radialDistortion=self.config.radialDistortion,
512 isLsstLike=self.config.isLsstLike,
513 )
514 camera = cameraWrapper.camera
515 return camera
516
517 def getExposure(self):
518 """Construct a test exposure.
519
520 The test exposure has a simple WCS set, as well as a list of
521 unlikely header keywords that can be removed during ISR
522 processing to exercise that code.
523
524 Returns
525 -------
526 exposure : `lsst.afw.exposure.Exposure`
527 Construct exposure containing masked image of the
528 appropriate size.
529 """
530 camera = self.getCamera()
531 detector = camera[self.config.detectorIndex]
532 image = afwUtils.makeImageFromCcd(detector,
533 isTrimmed=self.config.isTrimmed,
534 showAmpGain=False,
535 rcMarkSize=0,
536 binSize=1,
537 imageFactory=afwImage.ImageF)
538
539 var = afwImage.ImageF(image.getDimensions())
540 mask = afwImage.Mask(image.getDimensions())
541 image.assign(0.0)
542
543 maskedImage = afwImage.makeMaskedImage(image, mask, var)
544 exposure = afwImage.makeExposure(maskedImage)
545 exposure.setDetector(detector)
546 exposure.setWcs(self.getWcs())
547
548 visitInfo = afwImage.VisitInfo(exposureTime=self.config.expTime, darkTime=self.config.darkTime)
549 exposure.getInfo().setVisitInfo(visitInfo)
550
551 metadata = exposure.getMetadata()
552 metadata.add("SHEEP", 7.3, "number of sheep on farm")
553 metadata.add("MONKEYS", 155, "monkeys per tree")
554 metadata.add("VAMPIRES", 4, "How scary are vampires.")
555
556 ccd = exposure.getDetector()
557 newCcd = ccd.rebuild()
558 newCcd.clear()
559 for amp in ccd:
560 newAmp = amp.rebuild()
561 newAmp.setLinearityCoeffs((0., 1., 0., 0.))
562 newAmp.setLinearityType("Polynomial")
563 newAmp.setGain(self.config.gain)
564 newAmp.setSuspectLevel(25000.0)
565 newAmp.setSaturation(32000.0)
566 newCcd.append(newAmp)
567 exposure.setDetector(newCcd.finish())
568
569 exposure.image.array[:] = np.zeros(exposure.getImage().getDimensions()).transpose()
570 exposure.mask.array[:] = np.zeros(exposure.getMask().getDimensions()).transpose()
571 exposure.variance.array[:] = np.zeros(exposure.getVariance().getDimensions()).transpose()
572
573 return exposure
574
575 def getWcs(self):
576 """Construct a dummy WCS object.
577
578 Taken from the deprecated ip_isr/examples/exampleUtils.py.
579
580 This is not guaranteed, given the distortion and pixel scale
581 listed in the afwTestUtils camera definition.
582
583 Returns
584 -------
586 Test WCS transform.
587 """
588 return afwGeom.makeSkyWcs(crpix=lsst.geom.Point2D(0.0, 100.0),
589 crval=lsst.geom.SpherePoint(45.0, 25.0, lsst.geom.degrees),
590 cdMatrix=afwGeom.makeCdMatrix(scale=1.0*lsst.geom.degrees))
591
592 def localCoordToExpCoord(self, ampData, x, y):
593 """Convert between a local amplifier coordinate and the full
594 exposure coordinate.
595
596 Parameters
597 ----------
598 ampData : `lsst.afw.image.ImageF`
599 Amplifier image to use for conversions.
600 x : `int`
601 X-coordinate of the point to transform.
602 y : `int`
603 Y-coordinate of the point to transform.
604
605 Returns
606 -------
607 u : `int`
608 Transformed x-coordinate.
609 v : `int`
610 Transformed y-coordinate.
611
612 Notes
613 -----
614 The output is transposed intentionally here, to match the
615 internal transpose between numpy and afw.image coordinates.
616 """
617 u = x + ampData.getBBox().getBeginX()
618 v = y + ampData.getBBox().getBeginY()
619
620 return (v, u)
621
622 # Simple data values.
623 def amplifierAddNoise(self, ampData, mean, sigma):
624 """Add Gaussian noise to an amplifier's image data.
625
626 This method operates in the amplifier coordinate frame.
627
628 Parameters
629 ----------
630 ampData : `lsst.afw.image.ImageF`
631 Amplifier image to operate on.
632 mean : `float`
633 Mean value of the Gaussian noise.
634 sigma : `float`
635 Sigma of the Gaussian noise.
636 """
637 ampArr = ampData.array
638 ampArr[:] = ampArr[:] + self.rng.normal(mean, sigma,
639 size=ampData.getDimensions()).transpose()
640
641 def amplifierAddYGradient(self, ampData, start, end):
642 """Add a y-axis linear gradient to an amplifier's image data.
643
644 This method operates in the amplifier coordinate frame.
645
646 Parameters
647 ----------
648 ampData : `lsst.afw.image.ImageF`
649 Amplifier image to operate on.
650 start : `float`
651 Start value of the gradient (at y=0).
652 end : `float`
653 End value of the gradient (at y=ymax).
654 """
655 nPixY = ampData.getDimensions().getY()
656 ampArr = ampData.array
657 ampArr[:] = ampArr[:] + (np.interp(range(nPixY), (0, nPixY - 1), (start, end)).reshape(nPixY, 1)
658 + np.zeros(ampData.getDimensions()).transpose())
659
660 def amplifierAddSource(self, ampData, scale, x0, y0):
661 """Add a single Gaussian source to an amplifier.
662
663 This method operates in the amplifier coordinate frame.
664
665 Parameters
666 ----------
667 ampData : `lsst.afw.image.ImageF`
668 Amplifier image to operate on.
669 scale : `float`
670 Peak flux of the source to add.
671 x0 : `float`
672 X-coordinate of the source peak.
673 y0 : `float`
674 Y-coordinate of the source peak.
675 """
676 for x in range(0, ampData.getDimensions().getX()):
677 for y in range(0, ampData.getDimensions().getY()):
678 ampData.array[y][x] = (ampData.array[y][x]
679 + scale * np.exp(-0.5 * ((x - x0)**2 + (y - y0)**2) / 3.0**2))
680
681 def amplifierAddCT(self, ampDataSource, ampDataTarget, scale):
682 """Add a scaled copy of an amplifier to another, simulating crosstalk.
683
684 This method operates in the amplifier coordinate frame.
685
686 Parameters
687 ----------
688 ampDataSource : `lsst.afw.image.ImageF`
689 Amplifier image to add scaled copy from.
690 ampDataTarget : `lsst.afw.image.ImageF`
691 Amplifier image to add scaled copy to.
692 scale : `float`
693 Flux scale of the copy to add to the target.
694
695 Notes
696 -----
697 This simulates simple crosstalk between amplifiers.
698 """
699 ampDataTarget.array[:] = (ampDataTarget.array[:]
700 + scale * ampDataSource.array[:])
701
702 # Functional form data values.
703 def amplifierAddFringe(self, amp, ampData, scale, x0=100, y0=0):
704 """Add a fringe-like ripple pattern to an amplifier's image data.
705
706 Parameters
707 ----------
708 amp : `~lsst.afw.ampInfo.AmpInfoRecord`
709 Amplifier to operate on. Needed for amp<->exp coordinate
710 transforms.
711 ampData : `lsst.afw.image.ImageF`
712 Amplifier image to operate on.
713 scale : `numpy.array` or `float`
714 Peak intensity scaling for the ripple.
715 x0 : `numpy.array` or `float`, optional
716 Fringe center
717 y0 : `numpy.array` or `float`, optional
718 Fringe center
719
720 Notes
721 -----
722 This uses an offset sinc function to generate a ripple
723 pattern. True fringes have much finer structure, but this
724 pattern should be visually identifiable. The (x, y)
725 coordinates are in the frame of the amplifier, and (u, v) in
726 the frame of the full trimmed image.
727 """
728 for x in range(0, ampData.getDimensions().getX()):
729 for y in range(0, ampData.getDimensions().getY()):
730 (u, v) = self.localCoordToExpCoord(amp, x, y)
731 ampData.getArray()[y][x] = np.sum((ampData.getArray()[y][x]
732 + scale * np.sinc(((u - x0) / 50)**2
733 + ((v - y0) / 50)**2)))
734
735 def amplifierMultiplyFlat(self, amp, ampData, fracDrop, u0=100.0, v0=100.0):
736 """Multiply an amplifier's image data by a flat-like pattern.
737
738 Parameters
739 ----------
740 amp : `lsst.afw.ampInfo.AmpInfoRecord`
741 Amplifier to operate on. Needed for amp<->exp coordinate
742 transforms.
743 ampData : `lsst.afw.image.ImageF`
744 Amplifier image to operate on.
745 fracDrop : `float`
746 Fractional drop from center to edge of detector along x-axis.
747 u0 : `float`
748 Peak location in detector coordinates.
749 v0 : `float`
750 Peak location in detector coordinates.
751
752 Notes
753 -----
754 This uses a 2-d Gaussian to simulate an illumination pattern
755 that falls off towards the edge of the detector. The (x, y)
756 coordinates are in the frame of the amplifier, and (u, v) in
757 the frame of the full trimmed image.
758 """
759 if fracDrop >= 1.0:
760 raise RuntimeError("Flat fractional drop cannot be greater than 1.0")
761
762 sigma = u0 / np.sqrt(-2.0 * np.log(fracDrop))
763
764 for x in range(0, ampData.getDimensions().getX()):
765 for y in range(0, ampData.getDimensions().getY()):
766 (u, v) = self.localCoordToExpCoord(amp, x, y)
767 f = np.exp(-0.5 * ((u - u0)**2 + (v - v0)**2) / sigma**2)
768 ampData.array[y][x] = (ampData.array[y][x] * f)
769
770
772 """Generate a raw exposure suitable for ISR.
773 """
774 def __init__(self, **kwargs):
775 super().__init__(**kwargs)
776 self.config.isTrimmed = False
777 self.config.doGenerateImage = True
778 self.config.doGenerateAmpDict = False
779 self.config.doAddOverscan = True
780 self.config.doAddSky = True
781 self.config.doAddSource = True
782 self.config.doAddCrosstalk = False
783 self.config.doAddBias = True
784 self.config.doAddDark = True
785
786
788 """Generate a trimmed raw exposure.
789 """
790 def __init__(self, **kwargs):
791 super().__init__(**kwargs)
792 self.config.isTrimmed = True
793 self.config.doAddOverscan = False
794
795
797 """Generate a trimmed raw exposure.
798 """
799 def __init__(self, **kwargs):
800 super().__init__(**kwargs)
801 self.config.isTrimmed = True
802 self.config.doGenerateImage = True
803 self.config.doAddOverscan = False
804 self.config.doAddSky = True
805 self.config.doAddSource = True
806 self.config.doAddCrosstalk = False
807
808 self.config.doAddBias = False
809 self.config.doAddDark = False
810 self.config.doAddFlat = False
811 self.config.doAddFringe = True
812
813 self.config.biasLevel = 0.0
814 self.config.readNoise = 10.0
815
816
818 """Generate a raw exposure dict suitable for ISR.
819 """
820 def __init__(self, **kwargs):
821 super().__init__(**kwargs)
822 self.config.doGenerateAmpDict = True
823
824
826 """Parent class for those that make master calibrations.
827 """
828 def __init__(self, **kwargs):
829 super().__init__(**kwargs)
830 self.config.isTrimmed = True
831 self.config.doGenerateImage = True
832 self.config.doAddOverscan = False
833 self.config.doAddSky = False
834 self.config.doAddSource = False
835 self.config.doAddCrosstalk = False
836
837 self.config.doAddBias = False
838 self.config.doAddDark = False
839 self.config.doAddFlat = False
840 self.config.doAddFringe = False
841
842
844 """Simulated master bias calibration.
845 """
846 def __init__(self, **kwargs):
847 super().__init__(**kwargs)
848 self.config.doAddBias = True
849 self.config.readNoise = 10.0
850
851
853 """Simulated master dark calibration.
854 """
855 def __init__(self, **kwargs):
856 super().__init__(**kwargs)
857 self.config.doAddDark = True
858 self.config.darkTime = 1.0
859
860
862 """Simulated master flat calibration.
863 """
864 def __init__(self, **kwargs):
865 super().__init__(**kwargs)
866 self.config.doAddFlat = True
867
868
870 """Simulated master fringe calibration.
871 """
872 def __init__(self, **kwargs):
873 super().__init__(**kwargs)
874 self.config.doAddFringe = True
875
876
878 """Simulated untrimmed master fringe calibration.
879 """
880 def __init__(self, **kwargs):
881 super().__init__(**kwargs)
882 self.config.isTrimmed = False
883
884
886 """Simulated brighter-fatter kernel.
887 """
888 def __init__(self, **kwargs):
889 super().__init__(**kwargs)
890 self.config.doGenerateImage = False
891 self.config.doGenerateData = True
892 self.config.doBrighterFatter = True
893 self.config.doDefects = False
894 self.config.doCrosstalkCoeffs = False
895 self.config.doTransmissionCurve = False
896
897
899 """Simulated defect list.
900 """
901 def __init__(self, **kwargs):
902 super().__init__(**kwargs)
903 self.config.doGenerateImage = False
904 self.config.doGenerateData = True
905 self.config.doBrighterFatter = False
906 self.config.doDefects = True
907 self.config.doCrosstalkCoeffs = False
908 self.config.doTransmissionCurve = False
909
910
912 """Simulated crosstalk coefficient matrix.
913 """
914 def __init__(self, **kwargs):
915 super().__init__(**kwargs)
916 self.config.doGenerateImage = False
917 self.config.doGenerateData = True
918 self.config.doBrighterFatter = False
919 self.config.doDefects = False
920 self.config.doCrosstalkCoeffs = True
921 self.config.doTransmissionCurve = False
922
923
925 """Simulated transmission curve.
926 """
927 def __init__(self, **kwargs):
928 super().__init__(**kwargs)
929 self.config.doGenerateImage = False
930 self.config.doGenerateData = True
931 self.config.doBrighterFatter = False
932 self.config.doDefects = False
933 self.config.doCrosstalkCoeffs = False
934 self.config.doTransmissionCurve = True
935
936
938 """Container for holding ISR mock objects.
939 """
940 dataId = "isrMock Fake Data"
941 darkval = 2. # e-/sec
942 oscan = 250. # DN
943 gradient = .10
944 exptime = 15.0 # seconds
945 darkexptime = 15.0 # seconds
946
947 def __init__(self, **kwargs):
948 if 'config' in kwargs.keys():
949 self.config = kwargs['config']
950 else:
951 self.config = None
952
953 def expectImage(self):
954 if self.config is None:
955 self.config = IsrMockConfig()
956 self.config.doGenerateImage = True
957 self.config.doGenerateData = False
958
959 def expectData(self):
960 if self.config is None:
961 self.config = IsrMockConfig()
962 self.config.doGenerateImage = False
963 self.config.doGenerateData = True
964
965 def get(self, dataType, **kwargs):
966 """Return an appropriate data product.
967
968 Parameters
969 ----------
970 dataType : `str`
971 Type of data product to return.
972
973 Returns
974 -------
975 mock : IsrMock.run() result
976 The output product.
977 """
978 if "_filename" in dataType:
979 self.expectData()
980 return tempfile.mktemp(), "mock"
981 elif 'transmission_' in dataType:
982 self.expectData()
983 return TransmissionMock(config=self.config).run()
984 elif dataType == 'ccdExposureId':
985 self.expectData()
986 return 20090913
987 elif dataType == 'camera':
988 self.expectData()
989 return IsrMock(config=self.config).getCamera()
990 elif dataType == 'raw':
991 self.expectImage()
992 return RawMock(config=self.config).run()
993 elif dataType == 'bias':
994 self.expectImage()
995 return BiasMock(config=self.config).run()
996 elif dataType == 'dark':
997 self.expectImage()
998 return DarkMock(config=self.config).run()
999 elif dataType == 'flat':
1000 self.expectImage()
1001 return FlatMock(config=self.config).run()
1002 elif dataType == 'fringe':
1003 self.expectImage()
1004 return FringeMock(config=self.config).run()
1005 elif dataType == 'defects':
1006 self.expectData()
1007 return DefectMock(config=self.config).run()
1008 elif dataType == 'bfKernel':
1009 self.expectData()
1010 return BfKernelMock(config=self.config).run()
1011 elif dataType == 'linearizer':
1012 return None
1013 elif dataType == 'crosstalkSources':
1014 return None
1015 else:
1016 raise RuntimeError("ISR DataRefMock cannot return %s.", dataType)
1017
1018
1020 """Container for mock fringe data.
1021 """
1022 dataId = "isrMock Fake Data"
1023 darkval = 2. # e-/sec
1024 oscan = 250. # DN
1025 gradient = .10
1026 exptime = 15 # seconds
1027 darkexptime = 40. # seconds
1028
1029 def __init__(self, **kwargs):
1030 if 'config' in kwargs.keys():
1031 self.config = kwargs['config']
1032 else:
1033 self.config = IsrMockConfig()
1034 self.config.isTrimmed = True
1035 self.config.doAddFringe = True
1036 self.config.readNoise = 10.0
1037
1038 def get(self, dataType, **kwargs):
1039 """Return an appropriate data product.
1040
1041 Parameters
1042 ----------
1043 dataType : `str`
1044 Type of data product to return.
1045
1046 Returns
1047 -------
1048 mock : IsrMock.run() result
1049 The output product.
1050 """
1051 if "_filename" in dataType:
1052 return tempfile.mktemp(), "mock"
1053 elif 'transmission_' in dataType:
1054 return TransmissionMock(config=self.config).run()
1055 elif dataType == 'ccdExposureId':
1056 return 20090913
1057 elif dataType == 'camera':
1058 return IsrMock(config=self.config).getCamera()
1059 elif dataType == 'raw':
1060 return CalibratedRawMock(config=self.config).run()
1061 elif dataType == 'bias':
1062 return BiasMock(config=self.config).run()
1063 elif dataType == 'dark':
1064 return DarkMock(config=self.config).run()
1065 elif dataType == 'flat':
1066 return FlatMock(config=self.config).run()
1067 elif dataType == 'fringe':
1068 fringes = []
1069 configCopy = copy.deepcopy(self.config)
1070 for scale, x, y in zip(self.config.fringeScale, self.config.fringeX0, self.config.fringeY0):
1071 configCopy.fringeScale = [1.0]
1072 configCopy.fringeX0 = [x]
1073 configCopy.fringeY0 = [y]
1074 fringes.append(FringeMock(config=configCopy).run())
1075 return fringes
1076 elif dataType == 'defects':
1077 return DefectMock(config=self.config).run()
1078 elif dataType == 'bfKernel':
1079 return BfKernelMock(config=self.config).run()
1080 elif dataType == 'linearizer':
1081 return None
1082 elif dataType == 'crosstalkSources':
1083 return None
1084 else:
1085 return None
table::Key< table::Array< float > > crosstalk
Definition Detector.cc:174
table::Key< std::string > object
Definition VisitInfo.cc:232
A 2-dimensional celestial WCS that transform pixels to ICRS RA/Dec, using the LSST standard for pixel...
Definition SkyWcs.h:117
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Definition Exposure.h:72
Represent a 2-dimensional array of bitmask pixels.
Definition Mask.h:77
A spatially-varying transmission curve as a function of wavelength.
Information about a single exposure of an imaging camera.
Definition VisitInfo.h:68
An integer coordinate rectangle.
Definition Box.h:55
Point in an unspecified spherical coordinate system.
Definition SpherePoint.h:57
localCoordToExpCoord(self, ampData, x, y)
Definition isrMock.py:592
amplifierAddSource(self, ampData, scale, x0, y0)
Definition isrMock.py:660
amplifierMultiplyFlat(self, amp, ampData, fracDrop, u0=100.0, v0=100.0)
Definition isrMock.py:735
amplifierAddYGradient(self, ampData, start, end)
Definition isrMock.py:641
amplifierAddNoise(self, ampData, mean, sigma)
Definition isrMock.py:623
amplifierAddCT(self, ampDataSource, ampDataTarget, scale)
Definition isrMock.py:681
amplifierAddFringe(self, amp, ampData, scale, x0=100, y0=0)
Definition isrMock.py:703
__init__(self, **kwargs)
Definition isrMock.py:265
get(self, dataType, **kwargs)
Definition isrMock.py:965
get(self, dataType, **kwargs)
Definition isrMock.py:1038
__init__(self, **kwargs)
Definition isrMock.py:774
std::shared_ptr< SkyWcs > makeSkyWcs(daf::base::PropertySet &metadata, bool strip=false)
Construct a SkyWcs from FITS keywords.
Definition SkyWcs.cc:521
Eigen::Matrix2d makeCdMatrix(lsst::geom::Angle const &scale, lsst::geom::Angle const &orientation=0 *lsst::geom::degrees, bool flipX=false)
Make a WCS CD matrix.
Definition SkyWcs.cc:133
MaskedImage< ImagePixelT, MaskPixelT, VariancePixelT > * makeMaskedImage(typename std::shared_ptr< Image< ImagePixelT > > image, typename std::shared_ptr< Mask< MaskPixelT > > mask=Mask< MaskPixelT >(), typename std::shared_ptr< Image< VariancePixelT > > variance=Image< VariancePixelT >())
A function to return a MaskedImage of the correct type (cf.
std::shared_ptr< Exposure< ImagePixelT, MaskPixelT, VariancePixelT > > makeExposure(MaskedImage< ImagePixelT, MaskPixelT, VariancePixelT > &mimage, std::shared_ptr< geom::SkyWcs const > wcs=std::shared_ptr< geom::SkyWcs const >())
A function to return an Exposure of the correct type (cf.
Definition Exposure.h:484
bool defined
Definition slots.cc:27