LSST Applications 26.0.0,g0265f82a02+6660c170cc,g07994bdeae+30b05a742e,g0a0026dc87+17526d298f,g0a60f58ba1+17526d298f,g0e4bf8285c+96dd2c2ea9,g0ecae5effc+c266a536c8,g1e7d6db67d+6f7cb1f4bb,g26482f50c6+6346c0633c,g2bbee38e9b+6660c170cc,g2cc88a2952+0a4e78cd49,g3273194fdb+f6908454ef,g337abbeb29+6660c170cc,g337c41fc51+9a8f8f0815,g37c6e7c3d5+7bbafe9d37,g44018dc512+6660c170cc,g4a941329ef+4f7594a38e,g4c90b7bd52+5145c320d2,g58be5f913a+bea990ba40,g635b316a6c+8d6b3a3e56,g67924a670a+bfead8c487,g6ae5381d9b+81bc2a20b4,g93c4d6e787+26b17396bd,g98cecbdb62+ed2cb6d659,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga1e77700b3+99e9273977,gae46bcf261+6660c170cc,gb2715bf1a1+17526d298f,gc86a011abf+17526d298f,gcf0d15dbbd+96dd2c2ea9,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6660c170cc,ge23793e450+96dd2c2ea9,gf041782ebf+171108ac67
LSST Data Management Base Package
Loading...
Searching...
No Matches
linearize.py
Go to the documentation of this file.
2# LSST Data Management System
3# Copyright 2016 AURA/LSST.
4#
5# This product includes software developed by the
6# LSST Project (http://www.lsst.org/).
7#
8# This program is free software: you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation, either version 3 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the LSST License Statement and
19# the GNU General Public License along with this program. If not,
20# see <http://www.lsstcorp.org/LegalNotices/>.
21#
22
23__all__ = ["Linearizer",
24 "LinearizeBase", "LinearizeLookupTable", "LinearizeSquared",
25 "LinearizeProportional", "LinearizePolynomial", "LinearizeSpline", "LinearizeNone"]
26
27import abc
28import numpy as np
29
30from astropy.table import Table
31
32import lsst.afw.math as afwMath
33from lsst.pipe.base import Struct
34from lsst.geom import Box2I, Point2I, Extent2I
35from .applyLookupTable import applyLookupTable
36from .calibType import IsrCalib
37
38
40 """Parameter set for linearization.
41
42 These parameters are included in `lsst.afw.cameraGeom.Amplifier`, but
43 should be accessible externally to allow for testing.
44
45 Parameters
46 ----------
47 table : `numpy.array`, optional
48 Lookup table; a 2-dimensional array of floats:
49
50 - one row for each row index (value of coef[0] in the amplifier)
51 - one column for each image value
52
53 To avoid copying the table the last index should vary fastest
54 (numpy default "C" order)
55 detector : `lsst.afw.cameraGeom.Detector`, optional
56 Detector object. Passed to self.fromDetectorfromDetector() on init.
57 log : `logging.Logger`, optional
58 Logger to handle messages.
59 kwargs : `dict`, optional
60 Other keyword arguments to pass to the parent init.
61
62 Raises
63 ------
64 RuntimeError
65 Raised if the supplied table is not 2D, or if the table has fewer
66 columns than rows (indicating that the indices are swapped).
67
68 Notes
69 -----
70 The linearizer attributes stored are:
71
72 hasLinearity : `bool`
73 Whether a linearity correction is defined for this detector.
74 override : `bool`
75 Whether the detector parameters should be overridden.
76 ampNames : `list` [`str`]
77 List of amplifier names to correct.
78 linearityCoeffs : `dict` [`str`, `numpy.array`]
79 Coefficients to use in correction. Indexed by amplifier
80 names. The format of the array depends on the type of
81 correction to apply.
82 linearityType : `dict` [`str`, `str`]
83 Type of correction to use, indexed by amplifier names.
84 linearityBBox : `dict` [`str`, `lsst.geom.Box2I`]
85 Bounding box the correction is valid over, indexed by
86 amplifier names.
87 fitParams : `dict` [`str`, `numpy.array`], optional
88 Linearity fit parameters used to construct the correction
89 coefficients, indexed as above.
90 fitParamsErr : `dict` [`str`, `numpy.array`], optional
91 Uncertainty values of the linearity fit parameters used to
92 construct the correction coefficients, indexed as above.
93 fitChiSq : `dict` [`str`, `float`], optional
94 Chi-squared value of the linearity fit, indexed as above.
95 fitResiduals : `dict` [`str`, `numpy.array`], optional
96 Residuals of the fit, indexed as above. Used for
97 calculating photdiode corrections
98 linearFit : The linear fit to the low flux region of the curve.
99 [intercept, slope].
100 tableData : `numpy.array`, optional
101 Lookup table data for the linearity correction.
102 """
103 _OBSTYPE = "LINEARIZER"
104 _SCHEMA = 'Gen3 Linearizer'
105 _VERSION = 1.1
106
107 def __init__(self, table=None, **kwargs):
108 self.hasLinearity = False
109 self.override = False
110
111 self.ampNames = list()
112 self.linearityCoeffs = dict()
113 self.linearityType = dict()
114 self.linearityBBox = dict()
115 self.fitParams = dict()
116 self.fitParamsErr = dict()
117 self.fitChiSq = dict()
118 self.fitResiduals = dict()
119 self.linearFit = dict()
120 self.tableData = None
121 if table is not None:
122 if len(table.shape) != 2:
123 raise RuntimeError("table shape = %s; must have two dimensions" % (table.shape,))
124 if table.shape[1] < table.shape[0]:
125 raise RuntimeError("table shape = %s; indices are switched" % (table.shape,))
126 self.tableData = np.array(table, order="C")
127
128 super().__init__(**kwargs)
129 self.requiredAttributesrequiredAttributesrequiredAttributes.update(['hasLinearity', 'override',
130 'ampNames',
131 'linearityCoeffs', 'linearityType', 'linearityBBox',
132 'fitParams', 'fitParamsErr', 'fitChiSq',
133 'fitResiduals', 'linearFit', 'tableData'])
134
135 def updateMetadata(self, setDate=False, **kwargs):
136 """Update metadata keywords with new values.
137
138 This calls the base class's method after ensuring the required
139 calibration keywords will be saved.
140
141 Parameters
142 ----------
143 setDate : `bool`, optional
144 Update the CALIBDATE fields in the metadata to the current
145 time. Defaults to False.
146 kwargs :
147 Other keyword parameters to set in the metadata.
148 """
149 kwargs['HAS_LINEARITY'] = self.hasLinearity
150 kwargs['OVERRIDE'] = self.override
151 kwargs['HAS_TABLE'] = self.tableData is not None
152
153 super().updateMetadata(setDate=setDate, **kwargs)
154
155 def fromDetector(self, detector):
156 """Read linearity parameters from a detector.
157
158 Parameters
159 ----------
160 detector : `lsst.afw.cameraGeom.detector`
161 Input detector with parameters to use.
162
163 Returns
164 -------
165 calib : `lsst.ip.isr.Linearizer`
166 The calibration constructed from the detector.
167 """
168 self._detectorName_detectorName = detector.getName()
169 self._detectorSerial_detectorSerial = detector.getSerial()
170 self._detectorId_detectorId = detector.getId()
171 self.hasLinearity = True
172
173 # Do not translate Threshold, Maximum, Units.
174 for amp in detector.getAmplifiers():
175 ampName = amp.getName()
176 self.ampNames.append(ampName)
177 self.linearityType[ampName] = amp.getLinearityType()
178 self.linearityCoeffs[ampName] = amp.getLinearityCoeffs()
179 self.linearityBBox[ampName] = amp.getBBox()
180
181 return self
182
183 @classmethod
184 def fromDict(cls, dictionary):
185 """Construct a calibration from a dictionary of properties
186
187 Parameters
188 ----------
189 dictionary : `dict`
190 Dictionary of properties
191
192 Returns
193 -------
194 calib : `lsst.ip.isr.Linearity`
195 Constructed calibration.
196
197 Raises
198 ------
199 RuntimeError
200 Raised if the supplied dictionary is for a different
201 calibration.
202 """
203
204 calib = cls()
205
206 if calib._OBSTYPE != dictionary['metadata']['OBSTYPE']:
207 raise RuntimeError(f"Incorrect linearity supplied. Expected {calib._OBSTYPE}, "
208 f"found {dictionary['metadata']['OBSTYPE']}")
209
210 calib.setMetadata(dictionary['metadata'])
211
212 calib.hasLinearity = dictionary.get('hasLinearity',
213 dictionary['metadata'].get('HAS_LINEARITY', False))
214 calib.override = dictionary.get('override', True)
215
216 if calib.hasLinearity:
217 for ampName in dictionary['amplifiers']:
218 amp = dictionary['amplifiers'][ampName]
219 calib.ampNames.append(ampName)
220 calib.linearityCoeffs[ampName] = np.array(amp.get('linearityCoeffs', [0.0]))
221 calib.linearityType[ampName] = amp.get('linearityType', 'None')
222 calib.linearityBBox[ampName] = amp.get('linearityBBox', None)
223
224 calib.fitParams[ampName] = np.array(amp.get('fitParams', [0.0]))
225 calib.fitParamsErr[ampName] = np.array(amp.get('fitParamsErr', [0.0]))
226 calib.fitChiSq[ampName] = amp.get('fitChiSq', np.nan)
227 calib.fitResiduals[ampName] = np.array(amp.get('fitResiduals', [0.0]))
228 calib.linearFit[ampName] = np.array(amp.get('linearFit', [0.0]))
229
230 calib.tableData = dictionary.get('tableData', None)
231 if calib.tableData:
232 calib.tableData = np.array(calib.tableData)
233
234 return calib
235
236 def toDict(self):
237 """Return linearity parameters as a dict.
238
239 Returns
240 -------
241 outDict : `dict`:
242 """
244
245 outDict = {'metadata': self.getMetadata(),
246 'detectorName': self._detectorName_detectorName,
247 'detectorSerial': self._detectorSerial_detectorSerial,
248 'detectorId': self._detectorId_detectorId,
249 'hasTable': self.tableData is not None,
250 'amplifiers': dict(),
251 }
252 for ampName in self.linearityType:
253 outDict['amplifiers'][ampName] = {'linearityType': self.linearityType[ampName],
254 'linearityCoeffs': self.linearityCoeffs[ampName].tolist(),
255 'linearityBBox': self.linearityBBox[ampName],
256 'fitParams': self.fitParams[ampName].tolist(),
257 'fitParamsErr': self.fitParamsErr[ampName].tolist(),
258 'fitChiSq': self.fitChiSq[ampName],
259 'fitResiduals': self.fitResiduals[ampName].tolist(),
260 'linearFit': self.linearFit[ampName].tolist()}
261 if self.tableData is not None:
262 outDict['tableData'] = self.tableData.tolist()
263
264 return outDict
265
266 @classmethod
267 def fromTable(cls, tableList):
268 """Read linearity from a FITS file.
269
270 This method uses the `fromDict` method to create the
271 calibration, after constructing an appropriate dictionary from
272 the input tables.
273
274 Parameters
275 ----------
276 tableList : `list` [`astropy.table.Table`]
277 afwTable read from input file name.
278
279 Returns
280 -------
282 Linearity parameters.
283
284 Notes
285 -----
286 The method reads a FITS file with 1 or 2 extensions. The metadata is
287 read from the header of extension 1, which must exist. Then the table
288 is loaded, and the ['AMPLIFIER_NAME', 'TYPE', 'COEFFS', 'BBOX_X0',
289 'BBOX_Y0', 'BBOX_DX', 'BBOX_DY'] columns are read and used to set each
290 dictionary by looping over rows.
291 Extension 2 is then attempted to read in the try block (which only
292 exists for lookup tables). It has a column named 'LOOKUP_VALUES' that
293 contains a vector of the lookup entries in each row.
294 """
295 coeffTable = tableList[0]
296
297 metadata = coeffTable.meta
298 inDict = dict()
299 inDict['metadata'] = metadata
300 inDict['hasLinearity'] = metadata.get('HAS_LINEARITY', False)
301 inDict['amplifiers'] = dict()
302
303 for record in coeffTable:
304 ampName = record['AMPLIFIER_NAME']
305
306 fitParams = record['FIT_PARAMS'] if 'FIT_PARAMS' in record.columns else np.array([0.0])
307 fitParamsErr = record['FIT_PARAMS_ERR'] if 'FIT_PARAMS_ERR' in record.columns else np.array([0.0])
308 fitChiSq = record['RED_CHI_SQ'] if 'RED_CHI_SQ' in record.columns else np.nan
309 fitResiduals = record['FIT_RES'] if 'FIT_RES' in record.columns else np.array([0.0])
310 linearFit = record['LIN_FIT'] if 'LIN_FIT' in record.columns else np.array([0.0])
311
312 inDict['amplifiers'][ampName] = {
313 'linearityType': record['TYPE'],
314 'linearityCoeffs': record['COEFFS'],
315 'linearityBBox': Box2I(Point2I(record['BBOX_X0'], record['BBOX_Y0']),
316 Extent2I(record['BBOX_DX'], record['BBOX_DY'])),
317 'fitParams': fitParams,
318 'fitParamsErr': fitParamsErr,
319 'fitChiSq': fitChiSq,
320 'fitResiduals': fitResiduals,
321 'linearFit': linearFit,
322 }
323
324 if len(tableList) > 1:
325 tableData = tableList[1]
326 inDict['tableData'] = [record['LOOKUP_VALUES'] for record in tableData]
327
328 return cls().fromDict(inDict)
329
330 def toTable(self):
331 """Construct a list of tables containing the information in this
332 calibration.
333
334 The list of tables should create an identical calibration
335 after being passed to this class's fromTable method.
336
337 Returns
338 -------
339 tableList : `list` [`astropy.table.Table`]
340 List of tables containing the linearity calibration
341 information.
342 """
343
344 tableList = []
346 catalog = Table([{'AMPLIFIER_NAME': ampName,
347 'TYPE': self.linearityType[ampName],
348 'COEFFS': self.linearityCoeffs[ampName],
349 'BBOX_X0': self.linearityBBox[ampName].getMinX(),
350 'BBOX_Y0': self.linearityBBox[ampName].getMinY(),
351 'BBOX_DX': self.linearityBBox[ampName].getWidth(),
352 'BBOX_DY': self.linearityBBox[ampName].getHeight(),
353 'FIT_PARAMS': self.fitParams[ampName],
354 'FIT_PARAMS_ERR': self.fitParamsErr[ampName],
355 'RED_CHI_SQ': self.fitChiSq[ampName],
356 'FIT_RES': self.fitResiduals[ampName],
357 'LIN_FIT': self.linearFit[ampName],
358 } for ampName in self.ampNames])
359 catalog.meta = self.getMetadata().toDict()
360 tableList.append(catalog)
361
362 if self.tableData is not None:
363 catalog = Table([{'LOOKUP_VALUES': value} for value in self.tableData])
364 tableList.append(catalog)
365 return tableList
366
367 def getLinearityTypeByName(self, linearityTypeName):
368 """Determine the linearity class to use from the type name.
369
370 Parameters
371 ----------
372 linearityTypeName : str
373 String name of the linearity type that is needed.
374
375 Returns
376 -------
377 linearityType : `~lsst.ip.isr.linearize.LinearizeBase`
378 The appropriate linearity class to use. If no matching class
379 is found, `None` is returned.
380 """
381 for t in [LinearizeLookupTable,
382 LinearizeSquared,
383 LinearizePolynomial,
384 LinearizeProportional,
385 LinearizeSpline,
386 LinearizeNone]:
387 if t.LinearityType == linearityTypeName:
388 return t
389 return None
390
391 def validate(self, detector=None, amplifier=None):
392 """Validate linearity for a detector/amplifier.
393
394 Parameters
395 ----------
396 detector : `lsst.afw.cameraGeom.Detector`, optional
397 Detector to validate, along with its amplifiers.
398 amplifier : `lsst.afw.cameraGeom.Amplifier`, optional
399 Single amplifier to validate.
400
401 Raises
402 ------
403 RuntimeError
404 Raised if there is a mismatch in linearity parameters, and
405 the cameraGeom parameters are not being overridden.
406 """
407 amplifiersToCheck = []
408 if detector:
409 if self._detectorName_detectorName != detector.getName():
410 raise RuntimeError("Detector names don't match: %s != %s" %
411 (self._detectorName_detectorName, detector.getName()))
412 if int(self._detectorId_detectorId) != int(detector.getId()):
413 raise RuntimeError("Detector IDs don't match: %s != %s" %
414 (int(self._detectorId_detectorId), int(detector.getId())))
415 # TODO: DM-38778: This check fails on LATISS due to an
416 # error in the camera configuration.
417 # if self._detectorSerial != detector.getSerial():
418 # raise RuntimeError(
419 # "Detector serial numbers don't match: %s != %s" %
420 # (self._detectorSerial, detector.getSerial()))
421 if len(detector.getAmplifiers()) != len(self.linearityCoeffs.keys()):
422 raise RuntimeError("Detector number of amps = %s does not match saved value %s" %
423 (len(detector.getAmplifiers()),
424 len(self.linearityCoeffs.keys())))
425 amplifiersToCheck.extend(detector.getAmplifiers())
426
427 if amplifier:
428 amplifiersToCheck.extend(amplifier)
429
430 for amp in amplifiersToCheck:
431 ampName = amp.getName()
432 if ampName not in self.linearityCoeffs.keys():
433 raise RuntimeError("Amplifier %s is not in linearity data" %
434 (ampName, ))
435 if amp.getLinearityType() != self.linearityType[ampName]:
436 if self.override:
437 self.log.warning("Overriding amplifier defined linearityType (%s) for %s",
438 self.linearityType[ampName], ampName)
439 else:
440 raise RuntimeError("Amplifier %s type %s does not match saved value %s" %
441 (ampName, amp.getLinearityType(), self.linearityType[ampName]))
442 if (amp.getLinearityCoeffs().shape != self.linearityCoeffs[ampName].shape or not
443 np.allclose(amp.getLinearityCoeffs(), self.linearityCoeffs[ampName], equal_nan=True)):
444 if self.override:
445 self.log.warning("Overriding amplifier defined linearityCoeffs (%s) for %s",
446 self.linearityCoeffs[ampName], ampName)
447 else:
448 raise RuntimeError("Amplifier %s coeffs %s does not match saved value %s" %
449 (ampName, amp.getLinearityCoeffs(), self.linearityCoeffs[ampName]))
450
451 def applyLinearity(self, image, detector=None, log=None):
452 """Apply the linearity to an image.
453
454 If the linearity parameters are populated, use those,
455 otherwise use the values from the detector.
456
457 Parameters
458 ----------
459 image : `~lsst.afw.image.image`
460 Image to correct.
461 detector : `~lsst.afw.cameraGeom.detector`
462 Detector to use for linearity parameters if not already
463 populated.
464 log : `~logging.Logger`, optional
465 Log object to use for logging.
466 """
467 if log is None:
468 log = self.log
469 if detector and not self.hasLinearity:
470 self.fromDetectorfromDetector(detector)
471
472 self.validatevalidate(detector)
473
474 numAmps = 0
475 numLinearized = 0
476 numOutOfRange = 0
477 for ampName in self.linearityType.keys():
478 linearizer = self.getLinearityTypeByName(self.linearityType[ampName])
479 numAmps += 1
480 if linearizer is not None:
481 ampView = image.Factory(image, self.linearityBBox[ampName])
482 success, outOfRange = linearizer()(ampView, **{'coeffs': self.linearityCoeffs[ampName],
483 'table': self.tableData,
484 'log': self.log})
485 numOutOfRange += outOfRange
486 if success:
487 numLinearized += 1
488 elif log is not None:
489 log.warning("Amplifier %s did not linearize.",
490 ampName)
491 return Struct(
492 numAmps=numAmps,
493 numLinearized=numLinearized,
494 numOutOfRange=numOutOfRange
495 )
496
497
498class LinearizeBase(metaclass=abc.ABCMeta):
499 """Abstract base class functor for correcting non-linearity.
500
501 Subclasses must define ``__call__`` and set class variable
502 LinearityType to a string that will be used for linearity type in
503 the cameraGeom.Amplifier.linearityType field.
504
505 All linearity corrections should be defined in terms of an
506 additive correction, such that:
507
508 corrected_value = uncorrected_value + f(uncorrected_value)
509 """
510 LinearityType = None # linearity type, a string used for AmpInfoCatalogs
511
512 @abc.abstractmethod
513 def __call__(self, image, **kwargs):
514 """Correct non-linearity.
515
516 Parameters
517 ----------
518 image : `lsst.afw.image.Image`
519 Image to be corrected
520 kwargs : `dict`
521 Dictionary of parameter keywords:
522
523 ``coeffs``
524 Coefficient vector (`list` or `numpy.array`).
525 ``table``
526 Lookup table data (`numpy.array`).
527 ``log``
528 Logger to handle messages (`logging.Logger`).
529
530 Returns
531 -------
532 output : `bool`
533 If `True`, a correction was applied successfully.
534
535 Raises
536 ------
537 RuntimeError:
538 Raised if the linearity type listed in the
539 detector does not match the class type.
540 """
541 pass
542
543
545 """Correct non-linearity with a persisted lookup table.
546
547 The lookup table consists of entries such that given
548 "coefficients" c0, c1:
549
550 for each i,j of image:
551 rowInd = int(c0)
552 colInd = int(c1 + uncorrImage[i,j])
553 corrImage[i,j] = uncorrImage[i,j] + table[rowInd, colInd]
554
555 - c0: row index; used to identify which row of the table to use
556 (typically one per amplifier, though one can have multiple
557 amplifiers use the same table)
558 - c1: column index offset; added to the uncorrected image value
559 before truncation; this supports tables that can handle
560 negative image values; also, if the c1 ends with .5 then
561 the nearest index is used instead of truncating to the
562 next smaller index
563 """
564 LinearityType = "LookupTable"
565
566 def __call__(self, image, **kwargs):
567 """Correct for non-linearity.
568
569 Parameters
570 ----------
571 image : `lsst.afw.image.Image`
572 Image to be corrected
573 kwargs : `dict`
574 Dictionary of parameter keywords:
575
576 ``coeffs``
577 Columnation vector (`list` or `numpy.array`).
578 ``table``
579 Lookup table data (`numpy.array`).
580 ``log``
581 Logger to handle messages (`logging.Logger`).
582
583 Returns
584 -------
585 output : `tuple` [`bool`, `int`]
586 If true, a correction was applied successfully. The
587 integer indicates the number of pixels that were
588 uncorrectable by being out of range.
589
590 Raises
591 ------
592 RuntimeError:
593 Raised if the requested row index is out of the table
594 bounds.
595 """
596 numOutOfRange = 0
597
598 rowInd, colIndOffset = kwargs['coeffs'][0:2]
599 table = kwargs['table']
600 log = kwargs['log']
601
602 numTableRows = table.shape[0]
603 rowInd = int(rowInd)
604 if rowInd < 0 or rowInd > numTableRows:
605 raise RuntimeError("LinearizeLookupTable rowInd=%s not in range[0, %s)" %
606 (rowInd, numTableRows))
607 tableRow = np.array(table[rowInd, :], dtype=image.getArray().dtype)
608
609 numOutOfRange += applyLookupTable(image, tableRow, colIndOffset)
610
611 if numOutOfRange > 0 and log is not None:
612 log.warning("%s pixels were out of range of the linearization table",
613 numOutOfRange)
614 if numOutOfRange < image.getArray().size:
615 return True, numOutOfRange
616 else:
617 return False, numOutOfRange
618
619
621 """Correct non-linearity with a polynomial mode.
622
623 .. code-block::
624
625 corrImage = uncorrImage + sum_i c_i uncorrImage^(2 + i)
626
627 where ``c_i`` are the linearity coefficients for each amplifier.
628 Lower order coefficients are not included as they duplicate other
629 calibration parameters:
630
631 ``k0``
632 A coefficient multiplied by ``uncorrImage**0`` is equivalent to
633 bias level. Irrelevant for correcting non-linearity.
634 ``k1``
635 A coefficient multiplied by ``uncorrImage**1`` is proportional
636 to the gain. Not necessary for correcting non-linearity.
637 """
638 LinearityType = "Polynomial"
639
640 def __call__(self, image, **kwargs):
641 """Correct non-linearity.
642
643 Parameters
644 ----------
645 image : `lsst.afw.image.Image`
646 Image to be corrected
647 kwargs : `dict`
648 Dictionary of parameter keywords:
649
650 ``coeffs``
651 Coefficient vector (`list` or `numpy.array`).
652 If the order of the polynomial is n, this list
653 should have a length of n-1 ("k0" and "k1" are
654 not needed for the correction).
655 ``log``
656 Logger to handle messages (`logging.Logger`).
657
658 Returns
659 -------
660 output : `tuple` [`bool`, `int`]
661 If true, a correction was applied successfully. The
662 integer indicates the number of pixels that were
663 uncorrectable by being out of range.
664 """
665 if not np.any(np.isfinite(kwargs['coeffs'])):
666 return False, 0
667 if not np.any(kwargs['coeffs']):
668 return False, 0
669
670 ampArray = image.getArray()
671 correction = np.zeros_like(ampArray)
672 for order, coeff in enumerate(kwargs['coeffs'], start=2):
673 correction += coeff * np.power(ampArray, order)
674 ampArray += correction
675
676 return True, 0
677
678
680 """Correct non-linearity with a squared model.
681
682 corrImage = uncorrImage + c0*uncorrImage^2
683
684 where c0 is linearity coefficient 0 for each amplifier.
685 """
686 LinearityType = "Squared"
687
688 def __call__(self, image, **kwargs):
689 """Correct for non-linearity.
690
691 Parameters
692 ----------
693 image : `lsst.afw.image.Image`
694 Image to be corrected
695 kwargs : `dict`
696 Dictionary of parameter keywords:
697
698 ``coeffs``
699 Coefficient vector (`list` or `numpy.array`).
700 ``log``
701 Logger to handle messages (`logging.Logger`).
702
703 Returns
704 -------
705 output : `tuple` [`bool`, `int`]
706 If true, a correction was applied successfully. The
707 integer indicates the number of pixels that were
708 uncorrectable by being out of range.
709 """
710
711 sqCoeff = kwargs['coeffs'][0]
712 if sqCoeff != 0:
713 ampArr = image.getArray()
714 ampArr *= (1 + sqCoeff*ampArr)
715 return True, 0
716 else:
717 return False, 0
718
719
721 """Correct non-linearity with a spline model.
722
723 corrImage = uncorrImage - Spline(coeffs, uncorrImage)
724
725 Notes
726 -----
727
728 The spline fit calculates a correction as a function of the
729 expected linear flux term. Because of this, the correction needs
730 to be subtracted from the observed flux.
731
732 """
733 LinearityType = "Spline"
734
735 def __call__(self, image, **kwargs):
736 """Correct for non-linearity.
737
738 Parameters
739 ----------
740 image : `lsst.afw.image.Image`
741 Image to be corrected
742 kwargs : `dict`
743 Dictionary of parameter keywords:
744
745 ``coeffs``
746 Coefficient vector (`list` or `numpy.array`).
747 ``log``
748 Logger to handle messages (`logging.Logger`).
749
750 Returns
751 -------
752 output : `tuple` [`bool`, `int`]
753 If true, a correction was applied successfully. The
754 integer indicates the number of pixels that were
755 uncorrectable by being out of range.
756 """
757 splineCoeff = kwargs['coeffs']
758 centers, values = np.split(splineCoeff, 2)
759 # If the spline is not anchored at zero, remove the offset
760 # found at the lowest flux available, and add an anchor at
761 # flux=0.0 if there's no entry at that point.
762 if values[0] != 0:
763 offset = values[0]
764 values -= offset
765 if centers[0] != 0.0:
766 centers = np.concatenate(([0.0], centers))
767 values = np.concatenate(([0.0], values))
768
769 interp = afwMath.makeInterpolate(centers.tolist(), values.tolist(),
770 afwMath.stringToInterpStyle("AKIMA_SPLINE"))
771
772 ampArr = image.getArray()
773 delta = interp.interpolate(ampArr.flatten())
774 ampArr -= np.array(delta).reshape(ampArr.shape)
775
776 return True, 0
777
778
780 """Do not correct non-linearity.
781 """
782 LinearityType = "Proportional"
783
784 def __call__(self, image, **kwargs):
785 """Do not correct for non-linearity.
786
787 Parameters
788 ----------
789 image : `lsst.afw.image.Image`
790 Image to be corrected
791 kwargs : `dict`
792 Dictionary of parameter keywords:
793
794 ``coeffs``
795 Coefficient vector (`list` or `numpy.array`).
796 ``log``
797 Logger to handle messages (`logging.Logger`).
798
799 Returns
800 -------
801 output : `tuple` [`bool`, `int`]
802 If true, a correction was applied successfully. The
803 integer indicates the number of pixels that were
804 uncorrectable by being out of range.
805 """
806 return True, 0
807
808
810 """Do not correct non-linearity.
811 """
812 LinearityType = "None"
813
814 def __call__(self, image, **kwargs):
815 """Do not correct for non-linearity.
816
817 Parameters
818 ----------
819 image : `lsst.afw.image.Image`
820 Image to be corrected
821 kwargs : `dict`
822 Dictionary of parameter keywords:
823
824 ``coeffs``
825 Coefficient vector (`list` or `numpy.array`).
826 ``log``
827 Logger to handle messages (`logging.Logger`).
828
829 Returns
830 -------
831 output : `tuple` [`bool`, `int`]
832 If true, a correction was applied successfully. The
833 integer indicates the number of pixels that were
834 uncorrectable by being out of range.
835 """
836 return True, 0
table::Key< int > type
Definition Detector.cc:163
table::Key< int > to
Geometry and electronic information about raw amplifier images.
Definition Amplifier.h:86
A representation of a detector in a mosaic camera.
Definition Detector.h:185
A class to represent a 2-dimensional array of pixels.
Definition Image.h:51
An integer coordinate rectangle.
Definition Box.h:55
updateMetadata(self, camera=None, detector=None, filterName=None, setCalibId=False, setCalibInfo=False, setDate=False, **kwargs)
Definition calibType.py:197
__call__(self, image, **kwargs)
Definition linearize.py:513
__call__(self, image, **kwargs)
Definition linearize.py:814
applyLinearity(self, image, detector=None, log=None)
Definition linearize.py:451
getLinearityTypeByName(self, linearityTypeName)
Definition linearize.py:367
__init__(self, table=None, **kwargs)
Definition linearize.py:107
updateMetadata(self, setDate=False, **kwargs)
Definition linearize.py:135
validate(self, detector=None, amplifier=None)
Definition linearize.py:391
daf::base::PropertyList * list
Definition fits.cc:928
Interpolate::Style stringToInterpStyle(std::string const &style)
Conversion function to switch a string to an Interpolate::Style.
std::shared_ptr< Interpolate > makeInterpolate(std::vector< double > const &x, std::vector< double > const &y, Interpolate::Style const style=Interpolate::AKIMA_SPLINE)
A factory function to make Interpolate objects.