LSST Applications 27.0.0,g0265f82a02+469cd937ee,g02d81e74bb+21ad69e7e1,g1470d8bcf6+cbe83ee85a,g2079a07aa2+e67c6346a6,g212a7c68fe+04a9158687,g2305ad1205+94392ce272,g295015adf3+81dd352a9d,g2bbee38e9b+469cd937ee,g337abbeb29+469cd937ee,g3939d97d7f+72a9f7b576,g487adcacf7+71499e7cba,g50ff169b8f+5929b3527e,g52b1c1532d+a6fc98d2e7,g591dd9f2cf+df404f777f,g5a732f18d5+be83d3ecdb,g64a986408d+21ad69e7e1,g858d7b2824+21ad69e7e1,g8a8a8dda67+a6fc98d2e7,g99cad8db69+f62e5b0af5,g9ddcbc5298+d4bad12328,ga1e77700b3+9c366c4306,ga8c6da7877+71e4819109,gb0e22166c9+25ba2f69a1,gb6a65358fc+469cd937ee,gbb8dafda3b+69d3c0e320,gc07e1c2157+a98bf949bb,gc120e1dc64+615ec43309,gc28159a63d+469cd937ee,gcf0d15dbbd+72a9f7b576,gdaeeff99f8+a38ce5ea23,ge6526c86ff+3a7c1ac5f1,ge79ae78c31+469cd937ee,gee10cc3b42+a6fc98d2e7,gf1cff7945b+21ad69e7e1,gfbcc870c63+9a11dc8c8f
LSST Data Management Base Package
|
Classes | |
class | MappingTestCase |
class | ObjectTestCase |
Functions | |
makePolyMapCoeffs (nIn, nOut) | |
makeTwoWayPolyMap (nIn, nOut) | |
makeForwardPolyMap (nIn, nOut) | |
astshim.test.makeForwardPolyMap | ( | nIn, | |
nOut ) |
Make an astshim.PolyMap suitable for testing The forward transform is the same as for `makeTwoWayPolyMap`. This map does not have a reverse transform. The equation is chosen for the following reasons: - It is well defined for any positive value of nIn, nOut. - It stays small for small x, to avoid wraparound of angles for SpherePoint endpoints.
Definition at line 309 of file test.py.
astshim.test.makePolyMapCoeffs | ( | nIn, | |
nOut ) |
Make an array of coefficients for astshim.PolyMap for the following equation: fj(x) = C0j x0^2 + C1j x1^2 + C2j x2^2 + ... + CNj xN^2 where: * i ranges from 0 to N=nIn-1 * j ranges from 0 to nOut-1, * Cij = 0.001 (i+j+1)
Definition at line 262 of file test.py.
astshim.test.makeTwoWayPolyMap | ( | nIn, | |
nOut ) |
Make an astshim.PolyMap suitable for testing The forward transform is as follows: fj(x) = C0j x0^2 + C1j x1^2 + C2j x2^2 + ... + CNj xN^2 where Cij = 0.001 (i+j+1) The reverse transform is the same equation with i and j reversed thus it is NOT the inverse of the forward direction, but is something that can be easily evaluated. The equation is chosen for the following reasons: - It is well defined for any positive value of nIn, nOut. - It stays small for small x, to avoid wraparound of angles for SpherePoint endpoints.
Definition at line 283 of file test.py.