|
LSST Applications 27.0.0,g0265f82a02+469cd937ee,g02d81e74bb+21ad69e7e1,g1470d8bcf6+cbe83ee85a,g2079a07aa2+e67c6346a6,g212a7c68fe+04a9158687,g2305ad1205+94392ce272,g295015adf3+81dd352a9d,g2bbee38e9b+469cd937ee,g337abbeb29+469cd937ee,g3939d97d7f+72a9f7b576,g487adcacf7+71499e7cba,g50ff169b8f+5929b3527e,g52b1c1532d+a6fc98d2e7,g591dd9f2cf+df404f777f,g5a732f18d5+be83d3ecdb,g64a986408d+21ad69e7e1,g858d7b2824+21ad69e7e1,g8a8a8dda67+a6fc98d2e7,g99cad8db69+f62e5b0af5,g9ddcbc5298+d4bad12328,ga1e77700b3+9c366c4306,ga8c6da7877+71e4819109,gb0e22166c9+25ba2f69a1,gb6a65358fc+469cd937ee,gbb8dafda3b+69d3c0e320,gc07e1c2157+a98bf949bb,gc120e1dc64+615ec43309,gc28159a63d+469cd937ee,gcf0d15dbbd+72a9f7b576,gdaeeff99f8+a38ce5ea23,ge6526c86ff+3a7c1ac5f1,ge79ae78c31+469cd937ee,gee10cc3b42+a6fc98d2e7,gf1cff7945b+21ad69e7e1,gfbcc870c63+9a11dc8c8f
LSST Data Management Base Package
|
Namespaces | |
| namespace | cmodel |
| namespace | common |
| namespace | detail |
| namespace | optimizer |
| namespace | pixelFitRegion |
| namespace | priors |
| namespace | psf |
| namespace | version |
Classes | |
| class | AdaptiveImportanceSampler |
| Sampler class that performs Monte Carlo sampling, while iteratively updating the analytic distribution from which points are drawn. More... | |
| class | CModelAlgorithm |
| Main public interface class for CModel algorithm. More... | |
| struct | CModelControl |
| The main control object for CModel, containing parameters for the final linear fit and aggregating the other control objects. More... | |
| struct | CModelResult |
| Master result object for CModel, containing results for the final linear fit and three nested CModelStageResult objects for the results of the previous stages. More... | |
| struct | CModelStageControl |
| Nested control object for CModel that configures one of the three ("initial", "exp", "dev") nonlinear fitting stages. More... | |
| struct | CModelStageResult |
| Result object for a single nonlinear fitting stage of the CModel algorithm. More... | |
| class | DoubleShapeletPsfApproxAlgorithm |
| An algorithm that fits a 2-component shapelet approximation to the PSF model. More... | |
| class | DoubleShapeletPsfApproxControl |
| Control object used to configure a 2-shapelet fit to a PSF model; see DoubleShapeletPsfApproxAlgorithm. More... | |
| class | EpochFootprint |
| An image at one epoch of a galaxy, plus associated info. More... | |
| class | GeneralPsfFitter |
| Class for fitting multishapelet models to PSF images. More... | |
| class | GeneralPsfFitterAlgorithm |
| class | GeneralPsfFitterComponentControl |
| Control object used to define one piece of multishapelet fit to a PSF model; see GeneralPsfFitterControl. More... | |
| class | GeneralPsfFitterControl |
| Control object used to configure a multishapelet fit to a PSF model; see GeneralPsfFitter. More... | |
| class | ImportanceSamplerControl |
| Control object for one iteration of adaptive importance sampling. More... | |
| class | Likelihood |
| Base class for optimizer/sampler likelihood functions that compute likelihood at a point. More... | |
| struct | LocalUnitTransform |
| A local mapping between two UnitSystems. More... | |
| class | Mixture |
| class | MixtureComponent |
| A weighted Student's T or Gaussian distribution used as a component in a Mixture. More... | |
| class | MixturePrior |
| A prior that's flat in amplitude parameters, and uses a Mixture for nonlinear parameters. More... | |
| class | MixtureUpdateRestriction |
| Helper class used to define restrictions to the form of the component parameters in Mixture::updateEM. More... | |
| class | Model |
| Abstract base class and concrete factories that define multi-shapelet galaxy models. More... | |
| class | MultiModel |
| A concrete Model class that simply concatenates several other Models. More... | |
| class | MultiShapeletPsfLikelihood |
| Likelihood object used to fit multishapelet models to PSF model images; mostly for internal use by GeneralPsfFitter. More... | |
| class | Optimizer |
| A numerical optimizer customized for least-squares problems with Bayesian priors. More... | |
| class | OptimizerControl |
| Configuration object for Optimizer. More... | |
| class | OptimizerHistoryRecorder |
| class | OptimizerObjective |
| Base class for objective functions for Optimizer. More... | |
| class | PixelFitRegion |
| struct | PixelFitRegionControl |
| class | Prior |
| Base class for Bayesian priors. More... | |
| class | Sampler |
| class | SamplingObjective |
| class | SemiEmpiricalPrior |
| A piecewise prior motivated by both real distributions and practical considerations. More... | |
| struct | SemiEmpiricalPriorControl |
| class | SoftenedLinearPrior |
| A prior that's linear in radius and flat in ellipticity, with a cubic roll-off at the edges. More... | |
| struct | SoftenedLinearPriorControl |
| class | TruncatedGaussian |
| Represents a multidimensional Gaussian function truncated at zero. More... | |
| class | TruncatedGaussianEvaluator |
| Helper class for evaluating the -log of a TruncatedGaussian. More... | |
| class | TruncatedGaussianLogEvaluator |
| Helper class for evaluating the -log of a TruncatedGaussian. More... | |
| class | TruncatedGaussianSampler |
| Helper class for drawing samples from a TruncatedGaussian. More... | |
| struct | UnitSystem |
| A simple struct that combines a Wcs and a PhotoCalib. More... | |
| class | UnitTransformedLikelihood |
| A concrete Likelihood class that does not require its parameters and data to be in the same UnitSystem. More... | |
| class | UnitTransformedLikelihoodControl |
| Control object used to initialize a UnitTransformedLikelihood. More... | |
| typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> lsst::meas::modelfit::Matrix |
| typedef float lsst::meas::modelfit::Pixel |
Definition at line 42 of file adaptiveImportanceSampler.cc.
| using lsst::meas::modelfit::PyEpochFootprint = py::class_<EpochFootprint, std::shared_ptr<EpochFootprint>> |
Definition at line 43 of file unitTransformedLikelihood.cc.
Definition at line 40 of file adaptiveImportanceSampler.cc.
| using lsst::meas::modelfit::PyLikelihood = py::class_<Likelihood, std::shared_ptr<Likelihood>> |
Definition at line 38 of file likelihood.cc.
| using lsst::meas::modelfit::PyLocalUnitTransform = py::class_<LocalUnitTransform, std::shared_ptr<LocalUnitTransform>> |
Definition at line 37 of file unitSystem.cc.
| using lsst::meas::modelfit::PyModel = py::class_<Model, std::shared_ptr<Model>> |
| using lsst::meas::modelfit::PyMultiModel = py::class_<MultiModel, std::shared_ptr<MultiModel>, Model> |
Definition at line 37 of file multiModel.cc.
| using lsst::meas::modelfit::PyPixelFitRegion = py::class_<PixelFitRegion, std::shared_ptr<PixelFitRegion>> |
Definition at line 40 of file pixelFitRegion.cc.
| using lsst::meas::modelfit::PyPixelFitRegionControl = py::class_<PixelFitRegionControl, std::shared_ptr<PixelFitRegionControl>> |
Definition at line 39 of file pixelFitRegion.cc.
| using lsst::meas::modelfit::PySampler = py::class_<Sampler, std::shared_ptr<Sampler>> |
Definition at line 42 of file sampler.cc.
| using lsst::meas::modelfit::PySamplingObjective = py::class_<SamplingObjective, std::shared_ptr<SamplingObjective>> |
Definition at line 41 of file sampler.cc.
| using lsst::meas::modelfit::PyUnitSystem = py::class_<UnitSystem, std::shared_ptr<UnitSystem>> |
Definition at line 36 of file unitSystem.cc.
Definition at line 45 of file unitTransformedLikelihood.cc.
Definition at line 40 of file unitTransformedLikelihood.cc.
| typedef double lsst::meas::modelfit::Scalar |
| typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> lsst::meas::modelfit::Vector |
| lsst::meas::modelfit::PYBIND11_MODULE | ( | _modelfitLib | , |
| mod | ) |
Definition at line 51 of file _modelfitLib.cc.
| void lsst::meas::modelfit::solveTrustRegion | ( | ndarray::Array< Scalar, 1, 1 > const & | x, |
| ndarray::Array< Scalar const, 2, 1 > const & | F, | ||
| ndarray::Array< Scalar const, 1, 1 > const & | g, | ||
| double | r, | ||
| double | tolerance ) |
Solve a symmetric quadratic matrix equation with a ball constraint.
This computes a near-exact solution to the "trust region subproblem" necessary in trust-region-based nonlinear optimizers:
\[ \min_x{\quad g^T x + \frac{1}{2}x^T F x}\quad\quad\quad \text{s.t.} ||x|| \le r \]
The tolerance parameter sets how close to \(r\) we require the norm of the solution to be when it lies on the constraint, as a fraction of \(r\) itself.
This implementation is based on the algorithm described in Section 4.3 of "Nonlinear Optimization" by Nocedal and Wright.
| void lsst::meas::modelfit::wrapAdaptiveImportanceSampler | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 45 of file adaptiveImportanceSampler.cc.
| void lsst::meas::modelfit::wrapCmodel | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 205 of file cmodel.cc.
| void lsst::meas::modelfit::wrapIntegrals | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 36 of file integrals.cc.
| void lsst::meas::modelfit::wrapLikelihood | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 40 of file likelihood.cc.
| void lsst::meas::modelfit::wrapMixture | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 143 of file mixture.cc.
| void lsst::meas::modelfit::wrapModel | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 43 of file model.cc.
| void lsst::meas::modelfit::wrapMultiModel | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 39 of file multiModel.cc.
| void lsst::meas::modelfit::wrapOptimizer | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 172 of file optimizer.cc.
| void lsst::meas::modelfit::wrapPixelFitRegion | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 42 of file pixelFitRegion.cc.
| void lsst::meas::modelfit::wrapPriors | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
| void lsst::meas::modelfit::wrapPsf | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
| void lsst::meas::modelfit::wrapSampler | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 44 of file sampler.cc.
| void lsst::meas::modelfit::wrapTruncatedGaussian | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 121 of file truncatedGaussian.cc.
| void lsst::meas::modelfit::wrapUnitSystem | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 39 of file unitSystem.cc.
| void lsst::meas::modelfit::wrapUnitTransformedLikelihood | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 48 of file unitTransformedLikelihood.cc.