|
LSST Applications 28.0.0,g1653933729+a8ce1bb630,g1a997c3884+a8ce1bb630,g28da252d5a+5bd70b7e6d,g2bbee38e9b+638fca75ac,g2bc492864f+638fca75ac,g3156d2b45e+07302053f8,g347aa1857d+638fca75ac,g35bb328faa+a8ce1bb630,g3a166c0a6a+638fca75ac,g3e281a1b8c+7bbb0b2507,g4005a62e65+17cd334064,g414038480c+5b5cd4fff3,g41af890bb2+4ffae9de63,g4e1a3235cc+0f1912dca3,g6249c6f860+3c3976f90c,g80478fca09+46aba80bd6,g82479be7b0+77990446f6,g858d7b2824+78ba4d1ce1,g89c8672015+f667a5183b,g9125e01d80+a8ce1bb630,ga5288a1d22+2a6264e9ca,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc22bb204ba+78ba4d1ce1,gc28159a63d+638fca75ac,gcf0d15dbbd+32ddb6096f,gd6b7c0dfd1+3e339405e9,gda3e153d99+78ba4d1ce1,gda6a2b7d83+32ddb6096f,gdaeeff99f8+1711a396fd,gdd5a9049c5+b18c39e5e3,ge2409df99d+a5e4577cdc,ge33fd446bb+78ba4d1ce1,ge79ae78c31+638fca75ac,gf0baf85859+64e8883e75,gf5289d68f6+e1b046a8d7,gfa443fc69c+91d9ed1ecf,gfda6b12a05+8419469a56
LSST Data Management Base Package
|
Functions | |
| covar_to_ellipse (sigma_x_sq, sigma_y_sq, cov_xy, degrees=False) | |
| gauss2dint (xdivsigma) | |
| lsst.gauss2d.utils.covar_to_ellipse | ( | sigma_x_sq, | |
| sigma_y_sq, | |||
| cov_xy, | |||
| degrees = False ) |
Convert covariance matrix terms to ellipse major axis, axis ratio and
position angle representation.
Parameters
----------
sigma_x_sq, sigma_y_sq : `float` or array-like
x- and y-axis squared standard deviations of a 2-dimensional normal
distribution (diagonal terms of its covariance matrix).
Must be scalar or identical length array-likes.
cov_xy : `float` or array-like
x-y covariance of a of a 2-dimensional normal distribution
(off-diagonal term of its covariance matrix).
Must be scalar or identical length array-likes.
degrees : `bool`
Whether to return the position angle in degrees instead of radians.
Returns
-------
r_major, axrat, angle : `float` or array-like
Converted major-axis radius, axis ratio and position angle
(counter-clockwise from the +x axis) of the ellipse defined by
each set of input covariance matrix terms.
Notes
-----
The eigenvalues from the determinant of a covariance matrix are:
|a-m b|
|b c-m|
det = (a-m)(c-m) - b^2 = ac - (a+c)m + m^2 - b^2 = m^2 - (a+c)m + (ac-b^2)
Solving:
m = ((a+c) +/- sqrt((a+c)^2 - 4(ac-b^2)))/2
...or equivalently:
m = ((a+c) +/- sqrt((a-c)^2 + 4b^2))/2
Unfortunately, the latter simplification is not as well-behaved
in floating point math, leading to square roots of negative numbers when
one of a or c is very close to zero.
The values from this function should match those from
`Ellipse.make_ellipse_major` to within rounding error, except in the
special case of sigma_x == sigma_y == 0, which returns a NaN axis ratio
here by default. This function mainly intended to be more convenient
(and possibly faster) for array-like inputs.
Definition at line 25 of file utils.py.
| lsst.gauss2d.utils.gauss2dint | ( | xdivsigma | ) |
Return the fraction of the total surface integral of a 2D Gaussian
contained with a given multiple of its dispersion.
Parameters
----------
xdivsigma : `float`
The multiple of the dispersion to integrate to.
Returns
-------
frac : `float`
The fraction of the surface integral contained within an ellipse of
size `xdivsigma`.
Notes
-----
This solution can be computed as follows:
https://www.wolframalpha.com/input/?i=
Integrate+2*pi*x*exp(-x%5E2%2F(2*s%5E2))%2F(s*sqrt(2*pi))+dx+from+0+to+r
Definition at line 81 of file utils.py.