LSST Applications 29.0.1,g0fba68d861+132dd21e0a,g107a963962+1bb9f809a9,g1fd858c14a+005be21cae,g21d47ad084+8a07b29876,g325378336f+5d73323c8f,g330003fc43+40b4eaffc6,g35bb328faa+fcb1d3bbc8,g36ff55ed5b+9c28a42a87,g4e0f332c67+5fbd1e3e73,g53246c7159+fcb1d3bbc8,g60b5630c4e+9c28a42a87,g67b6fd64d1+a38b34ea13,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g86c591e316+6b2b2d0295,g8852436030+bf14db0e33,g89139ef638+a38b34ea13,g8b8da53e10+e3777245af,g9125e01d80+fcb1d3bbc8,g989de1cb63+a38b34ea13,g9f1445be69+9c28a42a87,g9f33ca652e+52c8f07962,ga9baa6287d+9c28a42a87,ga9e4eb89a6+9f84bd6575,gabe3b4be73+1e0a283bba,gb037a4e798+f3cbcd26c0,gb1101e3267+e7be8da0f8,gb58c049af0+f03b321e39,gb89ab40317+a38b34ea13,gcf25f946ba+bf14db0e33,gd6cbbdb0b4+bce7f7457e,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+53d424b1ae,ge278dab8ac+222406d50a,ge410e46f29+a38b34ea13,ge80e9994a3+664d6357dc,gf67bdafdda+a38b34ea13
LSST Data Management Base Package
|
Classes | |
class | MappingTestCase |
class | ObjectTestCase |
Functions | |
makePolyMapCoeffs (nIn, nOut) | |
makeTwoWayPolyMap (nIn, nOut) | |
makeForwardPolyMap (nIn, nOut) | |
astshim.test.makeForwardPolyMap | ( | nIn, | |
nOut ) |
Make an astshim.PolyMap suitable for testing The forward transform is the same as for `makeTwoWayPolyMap`. This map does not have a reverse transform. The equation is chosen for the following reasons: - It is well defined for any positive value of nIn, nOut. - It stays small for small x, to avoid wraparound of angles for SpherePoint endpoints.
Definition at line 309 of file test.py.
astshim.test.makePolyMapCoeffs | ( | nIn, | |
nOut ) |
Make an array of coefficients for astshim.PolyMap for the following equation: fj(x) = C0j x0^2 + C1j x1^2 + C2j x2^2 + ... + CNj xN^2 where: * i ranges from 0 to N=nIn-1 * j ranges from 0 to nOut-1, * Cij = 0.001 (i+j+1)
Definition at line 262 of file test.py.
astshim.test.makeTwoWayPolyMap | ( | nIn, | |
nOut ) |
Make an astshim.PolyMap suitable for testing The forward transform is as follows: fj(x) = C0j x0^2 + C1j x1^2 + C2j x2^2 + ... + CNj xN^2 where Cij = 0.001 (i+j+1) The reverse transform is the same equation with i and j reversed thus it is NOT the inverse of the forward direction, but is something that can be easily evaluated. The equation is chosen for the following reasons: - It is well defined for any positive value of nIn, nOut. - It stays small for small x, to avoid wraparound of angles for SpherePoint endpoints.
Definition at line 283 of file test.py.