LSST Applications 29.1.1,g0fba68d861+94d977d4f8,g1fd858c14a+0a42b1a450,g21d47ad084+bae5d1592d,g35bb328faa+fcb1d3bbc8,g36ff55ed5b+4036fd6440,g4e0f332c67+abab7ee1ee,g53246c7159+fcb1d3bbc8,g60b5630c4e+4036fd6440,g67b6fd64d1+31de10a2f7,g72a202582f+7a25662ef1,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g86c591e316+1a75853d69,g8852436030+8220ab3cb6,g88f4e072da+7005418d1d,g89139ef638+31de10a2f7,g8b8da53e10+8f7b08dc1c,g9125e01d80+fcb1d3bbc8,g989de1cb63+31de10a2f7,g9f1445be69+4036fd6440,g9f33ca652e+fcef3ba435,ga9baa6287d+4036fd6440,ga9e4eb89a6+a41a34c2ba,gabe3b4be73+1e0a283bba,gb0b61e0e8e+d456af7c26,gb1101e3267+f17a9d70ea,gb58c049af0+f03b321e39,gb89ab40317+31de10a2f7,gce29eb0867+05ed69485a,gcf25f946ba+8220ab3cb6,gd6cbbdb0b4+11317e7a17,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+b4f50ea554,ge278dab8ac+50e2446c94,ge410e46f29+31de10a2f7,ge80e9994a3+32bb9bc1c9,gf5e32f922b+fcb1d3bbc8,gf67bdafdda+31de10a2f7
LSST Data Management Base Package
|
Functions | |
covar_to_ellipse (sigma_x_sq, sigma_y_sq, cov_xy, degrees=False) | |
gauss2dint (xdivsigma) | |
lsst.gauss2d.utils.covar_to_ellipse | ( | sigma_x_sq, | |
sigma_y_sq, | |||
cov_xy, | |||
degrees = False ) |
Convert covariance matrix terms to ellipse major axis, axis ratio and position angle representation. Parameters ---------- sigma_x_sq, sigma_y_sq : `float` or array-like x- and y-axis squared standard deviations of a 2-dimensional normal distribution (diagonal terms of its covariance matrix). Must be scalar or identical length array-likes. cov_xy : `float` or array-like x-y covariance of a of a 2-dimensional normal distribution (off-diagonal term of its covariance matrix). Must be scalar or identical length array-likes. degrees : `bool` Whether to return the position angle in degrees instead of radians. Returns ------- r_major, axrat, angle : `float` or array-like Converted major-axis radius, axis ratio and position angle (counter-clockwise from the +x axis) of the ellipse defined by each set of input covariance matrix terms. Notes ----- The eigenvalues from the determinant of a covariance matrix are: |a-m b| |b c-m| det = (a-m)(c-m) - b^2 = ac - (a+c)m + m^2 - b^2 = m^2 - (a+c)m + (ac-b^2) Solving: m = ((a+c) +/- sqrt((a+c)^2 - 4(ac-b^2)))/2 ...or equivalently: m = ((a+c) +/- sqrt((a-c)^2 + 4b^2))/2 Unfortunately, the latter simplification is not as well-behaved in floating point math, leading to square roots of negative numbers when one of a or c is very close to zero. The values from this function should match those from `Ellipse.make_ellipse_major` to within rounding error, except in the special case of sigma_x == sigma_y == 0, which returns a NaN axis ratio here by default. This function mainly intended to be more convenient (and possibly faster) for array-like inputs.
Definition at line 25 of file utils.py.
lsst.gauss2d.utils.gauss2dint | ( | xdivsigma | ) |
Return the fraction of the total surface integral of a 2D Gaussian contained with a given multiple of its dispersion. Parameters ---------- xdivsigma : `float` The multiple of the dispersion to integrate to. Returns ------- frac : `float` The fraction of the surface integral contained within an ellipse of size `xdivsigma`. Notes ----- This solution can be computed as follows: https://www.wolframalpha.com/input/?i= Integrate+2*pi*x*exp(-x%5E2%2F(2*s%5E2))%2F(s*sqrt(2*pi))+dx+from+0+to+r
Definition at line 81 of file utils.py.