LSST Applications g0fba68d861+5616995c1c,g1ebb85f214+2420ccdea7,g1fd858c14a+44c57a1f81,g21d47ad084+8e51fce9ac,g262e1987ae+1a7d68eb3b,g2cef7863aa+3bd8df3d95,g35bb328faa+fcb1d3bbc8,g36ff55ed5b+2420ccdea7,g47891489e3+5c6313fe9a,g53246c7159+fcb1d3bbc8,g646c943bdb+dbb9921566,g67b6fd64d1+5c6313fe9a,g6bd32b75b5+2420ccdea7,g74acd417e5+37fc0c974d,g786e29fd12+cf7ec2a62a,g86c591e316+6e13bcb9e9,g87389fa792+1e0a283bba,g89139ef638+5c6313fe9a,g90f42f885a+fce05a46d3,g9125e01d80+fcb1d3bbc8,g93e38de9ac+5345a64125,g95a1e89356+47d08a1cc6,g97be763408+bba861c665,ga9e4eb89a6+85210110a1,gb0b61e0e8e+1f27f70249,gb58c049af0+f03b321e39,gb89ab40317+5c6313fe9a,gc4e39d7843+4e09c98c3d,gd16ba4ae74+5402bcf54a,gd8ff7fe66e+2420ccdea7,gd9a9a58781+fcb1d3bbc8,gdab6d2f7ff+37fc0c974d,gde280f09ee+604b327636,ge278dab8ac+50e2446c94,ge410e46f29+5c6313fe9a,gef3c2e6661+6b480e0fb7,gf67bdafdda+5c6313fe9a,gffca2db377+fcb1d3bbc8,v29.2.0.rc1
LSST Data Management Base Package
|
Functions | |
covar_to_ellipse (sigma_x_sq, sigma_y_sq, cov_xy, degrees=False) | |
gauss2dint (xdivsigma) | |
lsst.gauss2d.utils.covar_to_ellipse | ( | sigma_x_sq, | |
sigma_y_sq, | |||
cov_xy, | |||
degrees = False ) |
Convert covariance matrix terms to ellipse major axis, axis ratio and position angle representation. Parameters ---------- sigma_x_sq, sigma_y_sq : `float` or array-like x- and y-axis squared standard deviations of a 2-dimensional normal distribution (diagonal terms of its covariance matrix). Must be scalar or identical length array-likes. cov_xy : `float` or array-like x-y covariance of a of a 2-dimensional normal distribution (off-diagonal term of its covariance matrix). Must be scalar or identical length array-likes. degrees : `bool` Whether to return the position angle in degrees instead of radians. Returns ------- r_major, axrat, angle : `float` or array-like Converted major-axis radius, axis ratio and position angle (counter-clockwise from the +x axis) of the ellipse defined by each set of input covariance matrix terms. Notes ----- The eigenvalues from the determinant of a covariance matrix are: |a-m b| |b c-m| det = (a-m)(c-m) - b^2 = ac - (a+c)m + m^2 - b^2 = m^2 - (a+c)m + (ac-b^2) Solving: m = ((a+c) +/- sqrt((a+c)^2 - 4(ac-b^2)))/2 ...or equivalently: m = ((a+c) +/- sqrt((a-c)^2 + 4b^2))/2 Unfortunately, the latter simplification is not as well-behaved in floating point math, leading to square roots of negative numbers when one of a or c is very close to zero. The values from this function should match those from `Ellipse.make_ellipse_major` to within rounding error, except in the special case of sigma_x == sigma_y == 0, which returns a NaN axis ratio here by default. This function mainly intended to be more convenient (and possibly faster) for array-like inputs.
Definition at line 25 of file utils.py.
lsst.gauss2d.utils.gauss2dint | ( | xdivsigma | ) |
Return the fraction of the total surface integral of a 2D Gaussian contained with a given multiple of its dispersion. Parameters ---------- xdivsigma : `float` The multiple of the dispersion to integrate to. Returns ------- frac : `float` The fraction of the surface integral contained within an ellipse of size `xdivsigma`. Notes ----- This solution can be computed as follows: https://www.wolframalpha.com/input/?i= Integrate+2*pi*x*exp(-x%5E2%2F(2*s%5E2))%2F(s*sqrt(2*pi))+dx+from+0+to+r
Definition at line 81 of file utils.py.