LSSTApplications  8.0.0.0+107,8.0.0.1+13,9.1+18,9.2,master-g084aeec0a4,master-g0aced2eed8+6,master-g15627eb03c,master-g28afc54ef9,master-g3391ba5ea0,master-g3d0fb8ae5f,master-g4432ae2e89+36,master-g5c3c32f3ec+17,master-g60f1e072bb+1,master-g6a3ac32d1b,master-g76a88a4307+1,master-g7bce1f4e06+57,master-g8ff4092549+31,master-g98e65bf68e,master-ga6b77976b1+53,master-gae20e2b580+3,master-gb584cd3397+53,master-gc5448b162b+1,master-gc54cf9771d,master-gc69578ece6+1,master-gcbf758c456+22,master-gcec1da163f+63,master-gcf15f11bcc,master-gd167108223,master-gf44c96c709
LSSTDataManagementBasePackage
SdssCentroid.cc
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2013 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 #include <iostream>
24 #include <cmath>
25 #include <numeric>
26 #include "ndarray/eigen.h"
27 #include "lsst/afw/detection/Psf.h"
28 #include "lsst/pex/exceptions.h"
29 #include "lsst/pex/logging/Trace.h"
32 #include "lsst/afw/geom/Angle.h"
33 #include "lsst/afw/table/Source.h"
35 
36 
37 namespace lsst { namespace meas { namespace base {
38 
39 namespace {
40 
41 /************************************************************************************************************/
42 
43 float const AMPAST4 = 1.33; // amplitude of `4th order' corr compared to theory
44 
45 /*
46  * Do the Gaussian quartic interpolation for the position
47  * of the maximum for three equally spaced values vm,v0,vp, assumed to be at
48  * abscissae -1,0,1; the answer is returned as *cen
49  *
50  * Return 0 is all is well, otherwise 1
51  */
52 static int inter4(float vm, float v0, float vp, float *cen) {
53  float const sp = v0 - vp;
54  float const sm = v0 - vm;
55  float const d2 = sp + sm;
56  float const s = 0.5*(vp - vm);
57 
58  if (d2 <= 0.0f || v0 <= 0.0f) {
59  return(1);
60  }
61 
62  *cen = s/d2*(1.0 + AMPAST4*sp*sm/(d2*v0));
63 
64  return fabs(*cen) < 1 ? 0 : 1;
65 }
66 
67 /*****************************************************************************/
68 /*
69  * Calculate error in centroid
70  */
71 float astrom_errors(float skyVar, // variance of pixels at the sky level
72  float sourceVar, // variance in peak due to excess counts over sky
73  float A, // abs(peak value in raw image)
74  float tau2, // Object is N(0,tau2)
75  float As, // abs(peak value in smoothed image)
76  float s, // slope across central pixel
77  float d, // curvature at central pixel
78  float sigma, // width of smoothing filter
79  int quarticBad) { // was quartic estimate bad?
80 
81  float const k = quarticBad ? 0 : AMPAST4; /* quartic correction coeff */
82  float const sigma2 = sigma*sigma; /* == sigma^2 */
83  float sVar, dVar; /* variances of s and d */
84  float xVar; /* variance of centroid, x */
85 
86  if (fabs(As) < std::numeric_limits<float>::min() ||
87  fabs(d) < std::numeric_limits<float>::min()) {
88  return(1e3);
89  }
90 
91  if (sigma <= 0) { /* no smoothing; no covariance */
92  sVar = 0.5*skyVar; /* due to sky */
93  dVar = 6*skyVar;
94 
95  sVar += 0.5*sourceVar*exp(-1/(2*tau2));
96  dVar += sourceVar*(4*exp(-1/(2*tau2)) + 2*exp(-1/(2*tau2)));
97  } else { /* smoothed */
98  sVar = skyVar/(8*lsst::afw::geom::PI*sigma2)*(1 - exp(-1/sigma2));
99  dVar = skyVar/(2*lsst::afw::geom::PI*sigma2)*(3 - 4*exp(-1/(4*sigma2)) + exp(-1/sigma2));
100 
101  sVar += sourceVar/(12*lsst::afw::geom::PI*sigma2)*(exp(-1/(3*sigma2)) - exp(-1/sigma2));
102  dVar += sourceVar/(3*lsst::afw::geom::PI*sigma2)*(2 - 3*exp(-1/(3*sigma2)) + exp(-1/sigma2));
103  }
104 
105  xVar = sVar*pow(1/d + k/(4*As)*(1 - 12*s*s/(d*d)), 2) +
106  dVar*pow(s/(d*d) - k/(4*As)*8*s*s/(d*d*d), 2);
107 
108  return(xVar >= 0 ? sqrt(xVar) : NAN);
109 }
110 
111 /************************************************************************************************************/
112 /*
113  * Estimate the position of an object, assuming we know that it's approximately the size of the PSF
114  */
115 
116 template<typename ImageXy_locatorT, typename VarImageXy_locatorT>
117 void doMeasureCentroidImpl(double *xCenter, // output; x-position of object
118  double *dxc, // output; error in xCenter
119  double *yCenter, // output; y-position of object
120  double *dyc, // output; error in yCenter
121  double *sizeX2, double *sizeY2, // output; object widths^2 in x and y directions
122  ImageXy_locatorT im, // Locator for the pixel values
123  VarImageXy_locatorT vim, // Locator for the image containing the variance
124  double smoothingSigma // Gaussian sigma of already-applied smoothing filter
125  )
126 {
127  /*
128  * find a first quadratic estimate
129  */
130  double const d2x = 2*im(0, 0) - im(-1, 0) - im(1, 0);
131  double const d2y = 2*im(0, 0) - im( 0, -1) - im(0, 1);
132  double const sx = 0.5*(im(1, 0) - im(-1, 0));
133  double const sy = 0.5*(im(0, 1) - im( 0, -1));
134 
135  if (d2x == 0.0 || d2y == 0.0) {
136  throw LSST_EXCEPT(lsst::pex::exceptions::RuntimeError, "Object has a vanishing 2nd derivative");
137  }
138  if (d2x < 0.0 || d2y < 0.0) {
139  throw LSST_EXCEPT(lsst::pex::exceptions::RuntimeError,
140  (boost::format("Object is not at a maximum: d2I/dx2, d2I/dy2 = %g %g")
141  % d2x % d2y).str());
142  }
143 
144  double const dx0 = sx/d2x;
145  double const dy0 = sy/d2y; // first guess
146 
147  if (fabs(dx0) > 10.0 || fabs(dy0) > 10.0) {
148  throw LSST_EXCEPT(lsst::pex::exceptions::RuntimeError,
149  (boost::format("Object has an almost vanishing 2nd derivative:"
150  " sx, d2x, sy, d2y = %f %f %f %f")
151  % sx % d2x % sy % d2y).str());
152  }
153 
154  double vpk = im(0, 0) + 0.5*(sx*dx0 + sy*dy0); // height of peak in image
155  if (vpk < 0) {
156  vpk = -vpk;
157  }
158 /*
159  * now evaluate maxima on stripes
160  */
161  float m0x = 0, m1x = 0, m2x = 0;
162  float m0y = 0, m1y = 0, m2y = 0;
163 
164  int quarticBad = 0;
165  quarticBad += inter4(im(-1, -1), im( 0, -1), im( 1, -1), &m0x);
166  quarticBad += inter4(im(-1, 0), im( 0, 0), im( 1, 0), &m1x);
167  quarticBad += inter4(im(-1, 1), im( 0, 1), im( 1, 1), &m2x);
168 
169  quarticBad += inter4(im(-1, -1), im(-1, 0), im(-1, 1), &m0y);
170  quarticBad += inter4(im( 0, -1), im( 0, 0), im( 0, 1), &m1y);
171  quarticBad += inter4(im( 1, -1), im( 1, 0), im( 1, 1), &m2y);
172 
173  double xc, yc; // position of maximum
174  double sigmaX2, sigmaY2; // widths^2 in x and y of smoothed object
175 
176  if (quarticBad) { // >= 1 quartic interpolator is bad
177  xc = dx0;
178  yc = dy0;
179  sigmaX2 = vpk/d2x; // widths^2 in x
180  sigmaY2 = vpk/d2y; // and y
181  } else {
182  double const smx = 0.5*(m2x - m0x);
183  double const smy = 0.5*(m2y - m0y);
184  double const dm2x = m1x - 0.5*(m0x + m2x);
185  double const dm2y = m1y - 0.5*(m0y + m2y);
186  double const dx = m1x + dy0*(smx - dy0*dm2x); // first quartic approx
187  double const dy = m1y + dx0*(smy - dx0*dm2y);
188  double const dx4 = m1x + dy*(smx - dy*dm2x); // second quartic approx
189  double const dy4 = m1y + dx*(smy - dx*dm2y);
190 
191  xc = dx4;
192  yc = dy4;
193  sigmaX2 = vpk/d2x - (1 + 6*dx0*dx0)/4; // widths^2 in x
194  sigmaY2 = vpk/d2y - (1 + 6*dy0*dy0)/4; // and y
195  }
196  /*
197  * Now for the errors.
198  */
199  float tauX2 = sigmaX2; // width^2 of _un_ smoothed object
200  float tauY2 = sigmaY2;
201  tauX2 -= smoothingSigma*smoothingSigma; // correct for smoothing
202  tauY2 -= smoothingSigma*smoothingSigma;
203 
204  if (tauX2 <= smoothingSigma*smoothingSigma) { // problem; sigmaX2 must be bad
205  tauX2 = smoothingSigma*smoothingSigma;
206  }
207  if (tauY2 <= smoothingSigma*smoothingSigma) { // sigmaY2 must be bad
208  tauY2 = smoothingSigma*smoothingSigma;
209  }
210 
211  float const skyVar = (vim(-1, -1) + vim( 0, -1) + vim( 1, -1) +
212  vim(-1, 0) + vim( 1, 0) +
213  vim(-1, 1) + vim( 0, 1) + vim( 1, 1))/8.0; // Variance in sky
214  float const sourceVar = vim(0, 0); // extra variance of peak due to its photons
215  float const A = vpk*sqrt((sigmaX2/tauX2)*(sigmaY2/tauY2)); // peak of Unsmoothed object
216 
217  *xCenter = xc;
218  *yCenter = yc;
219 
220  *dxc = astrom_errors(skyVar, sourceVar, A, tauX2, vpk, sx, d2x, fabs(smoothingSigma), quarticBad);
221  *dyc = astrom_errors(skyVar, sourceVar, A, tauY2, vpk, sy, d2y, fabs(smoothingSigma), quarticBad);
222 
223  *sizeX2 = tauX2; // return the estimates of the (object size)^2
224  *sizeY2 = tauY2;
225 }
226 
227 template<typename MaskedImageXy_locatorT>
228 void doMeasureCentroidImpl(double *xCenter, // output; x-position of object
229  double *dxc, // output; error in xCenter
230  double *yCenter, // output; y-position of object
231  double *dyc, // output; error in yCenter
232  double *sizeX2, double *sizeY2, // output; object widths^2 in x and y directions
233  double *peakVal, // output; peak of object
234  MaskedImageXy_locatorT mim, // Locator for the pixel values
235  double smoothingSigma // Gaussian sigma of already-applied smoothing filter
236  )
237 {
238  /*
239  * find a first quadratic estimate
240  */
241  double const d2x = 2*mim.image(0, 0) - mim.image(-1, 0) - mim.image(1, 0);
242  double const d2y = 2*mim.image(0, 0) - mim.image( 0, -1) - mim.image(0, 1);
243  double const sx = 0.5*(mim.image(1, 0) - mim.image(-1, 0));
244  double const sy = 0.5*(mim.image(0, 1) - mim.image( 0, -1));
245 
246  if (d2x == 0.0 || d2y == 0.0) {
247  throw LSST_EXCEPT(lsst::pex::exceptions::RuntimeError, "Object has a vanishing 2nd derivative");
248  }
249  if (d2x < 0.0 || d2y < 0.0) {
250  throw LSST_EXCEPT(lsst::pex::exceptions::RuntimeError,
251  (boost::format("Object is not at a maximum: d2I/dx2, d2I/dy2 = %g %g")
252  % d2x % d2y).str());
253  }
254 
255  double const dx0 = sx/d2x;
256  double const dy0 = sy/d2y; // first guess
257 
258  if (fabs(dx0) > 10.0 || fabs(dy0) > 10.0) {
259  throw LSST_EXCEPT(lsst::pex::exceptions::RuntimeError,
260  (boost::format("Object has an almost vanishing 2nd derivative:"
261  " sx, d2x, sy, d2y = %f %f %f %f")
262  % sx % d2x % sy % d2y).str());
263  }
264 
265  double vpk = mim.image(0, 0) + 0.5*(sx*dx0 + sy*dy0); // height of peak in image
266  if (vpk < 0) {
267  vpk = -vpk;
268  }
269 /*
270  * now evaluate maxima on stripes
271  */
272  float m0x = 0, m1x = 0, m2x = 0;
273  float m0y = 0, m1y = 0, m2y = 0;
274 
275  int quarticBad = 0;
276  quarticBad += inter4(mim.image(-1, -1), mim.image( 0, -1), mim.image( 1, -1), &m0x);
277  quarticBad += inter4(mim.image(-1, 0), mim.image( 0, 0), mim.image( 1, 0), &m1x);
278  quarticBad += inter4(mim.image(-1, 1), mim.image( 0, 1), mim.image( 1, 1), &m2x);
279 
280  quarticBad += inter4(mim.image(-1, -1), mim.image(-1, 0), mim.image(-1, 1), &m0y);
281  quarticBad += inter4(mim.image( 0, -1), mim.image( 0, 0), mim.image( 0, 1), &m1y);
282  quarticBad += inter4(mim.image( 1, -1), mim.image( 1, 0), mim.image( 1, 1), &m2y);
283 
284  double xc, yc; // position of maximum
285  double sigmaX2, sigmaY2; // widths^2 in x and y of smoothed object
286 
287  if (quarticBad) { // >= 1 quartic interpolator is bad
288  xc = dx0;
289  yc = dy0;
290  sigmaX2 = vpk/d2x; // widths^2 in x
291  sigmaY2 = vpk/d2y; // and y
292  } else {
293  double const smx = 0.5*(m2x - m0x);
294  double const smy = 0.5*(m2y - m0y);
295  double const dm2x = m1x - 0.5*(m0x + m2x);
296  double const dm2y = m1y - 0.5*(m0y + m2y);
297  double const dx = m1x + dy0*(smx - dy0*dm2x); // first quartic approx
298  double const dy = m1y + dx0*(smy - dx0*dm2y);
299  double const dx4 = m1x + dy*(smx - dy*dm2x); // second quartic approx
300  double const dy4 = m1y + dx*(smy - dx*dm2y);
301 
302  xc = dx4;
303  yc = dy4;
304  sigmaX2 = vpk/d2x - (1 + 6*dx0*dx0)/4; // widths^2 in x
305  sigmaY2 = vpk/d2y - (1 + 6*dy0*dy0)/4; // and y
306  }
307  /*
308  * Now for the errors.
309  */
310  float tauX2 = sigmaX2; // width^2 of _un_ smoothed object
311  float tauY2 = sigmaY2;
312  tauX2 -= smoothingSigma*smoothingSigma; // correct for smoothing
313  tauY2 -= smoothingSigma*smoothingSigma;
314 
315  if (tauX2 <= smoothingSigma*smoothingSigma) { // problem; sigmaX2 must be bad
316  tauX2 = smoothingSigma*smoothingSigma;
317  }
318  if (tauY2 <= smoothingSigma*smoothingSigma) { // sigmaY2 must be bad
319  tauY2 = smoothingSigma*smoothingSigma;
320  }
321 
322  float const skyVar = (mim.variance(-1, -1) + mim.variance( 0, -1) + mim.variance( 1, -1) +
323  mim.variance(-1, 0) + mim.variance( 1, 0) +
324  mim.variance(-1, 1) + mim.variance( 0, 1) + mim.variance( 1, 1)
325  )/8.0; // Variance in sky
326  float const sourceVar = mim.variance(0, 0); // extra variance of peak due to its photons
327  float const A = vpk*sqrt((sigmaX2/tauX2)*(sigmaY2/tauY2)); // peak of Unsmoothed object
328 
329  *xCenter = xc;
330  *yCenter = yc;
331 
332  *dxc = astrom_errors(skyVar, sourceVar, A, tauX2, vpk, sx, d2x, fabs(smoothingSigma), quarticBad);
333  *dyc = astrom_errors(skyVar, sourceVar, A, tauY2, vpk, sy, d2y, fabs(smoothingSigma), quarticBad);
334 
335  *sizeX2 = tauX2; // return the estimates of the (object size)^2
336  *sizeY2 = tauY2;
337 
338  *peakVal = vpk;
339 }
340 
341 template<typename MaskedImageT>
342 std::pair<MaskedImageT, double>
343 smoothAndBinImage(CONST_PTR(lsst::afw::detection::Psf) psf,
344  int const x, const int y,
345  MaskedImageT const& mimage,
346  int binX, int binY,
347  FlagHandler _flagHandler)
348 {
349  lsst::afw::geom::Point2D const center(x + mimage.getX0(), y + mimage.getY0());
350  lsst::afw::geom::ellipses::Quadrupole const& shape = psf->computeShape(center);
351  double const smoothingSigma = shape.getDeterminantRadius();
352 #if 0
353  double const nEffective = psf->computeEffectiveArea(); // not implemented yet (#2821)
354 #else
355  double const nEffective = 4*M_PI*smoothingSigma*smoothingSigma; // correct for a Gaussian
356 #endif
357 
359  int const kWidth = kernel->getWidth();
360  int const kHeight = kernel->getHeight();
361 
362  lsst::afw::geom::BoxI bbox(lsst::afw::geom::Point2I(x - binX*(2 + kWidth/2), y - binY*(2 + kHeight/2)),
363  lsst::afw::geom::ExtentI(binX*(3 + kWidth + 1), binY*(3 + kHeight + 1)));
364 
365  // image to smooth, a shallow copy
366  PTR(MaskedImageT) subImage;
367  try {
368  subImage.reset(new MaskedImageT(mimage, bbox, lsst::afw::image::LOCAL));
369  } catch (pex::exceptions::LengthError & err) {
370  throw LSST_EXCEPT(
371  MeasurementError,
372  _flagHandler.getDefinition(SdssCentroidAlgorithm::EDGE).doc,
374  );
375  }
376  PTR(MaskedImageT) binnedImage = lsst::afw::math::binImage(*subImage, binX, binY, lsst::afw::math::MEAN);
377  binnedImage->setXY0(subImage->getXY0());
378  // image to smooth into, a deep copy.
379  MaskedImageT smoothedImage = MaskedImageT(*binnedImage, true);
380  assert(smoothedImage.getWidth()/2 == kWidth/2 + 2); // assumed by the code that uses smoothedImage
381  assert(smoothedImage.getHeight()/2 == kHeight/2 + 2);
382 
383  lsst::afw::math::convolve(smoothedImage, *binnedImage, *kernel, lsst::afw::math::ConvolutionControl());
384  *smoothedImage.getVariance() *= binX*binY*nEffective; // We want the per-pixel variance, so undo the
385  // effects of binning and smoothing
386 
387  return std::make_pair(smoothedImage, smoothingSigma);
388 }
389 
390 } // end anonymous namespace
391 
393  Control const & ctrl,
394  std::string const & name,
395  afw::table::Schema & schema
396 ) : _ctrl(ctrl),
397  _centroidKey(
398  CentroidResultKey::addFields(schema, name, "centroid from Sdss Centroid algorithm", SIGMA_ONLY)
399  ),
400  _centroidExtractor(schema, name, true)
401 {
402  static boost::array<FlagDefinition,N_FLAGS> const flagDefs = {{
403  {"flag", "general failure flag, set if anything went wrong"},
404  {"flag_edge", "Object too close to edge"},
405  {"flag_badData", "Algorithm could not measure this data"}
406  }};
407  _flagHandler = FlagHandler::addFields(schema, name, flagDefs.begin(), flagDefs.end());
408 }
410  afw::table::SourceRecord & measRecord,
411  afw::image::Exposure<float> const & exposure
412 ) const {
413 
414  // get our current best guess about the centroid: either a centroider measurement or peak.
415  afw::geom::Point2D center = _centroidExtractor(measRecord, _flagHandler);
416  CentroidResult result;
417  result.x = center.getX();
418  result.y = center.getY();
419  measRecord.set(_centroidKey, result); // better than NaN
420 
421  typedef afw::image::Exposure<float>::MaskedImageT MaskedImageT;
422  typedef MaskedImageT::Image ImageT;
423  typedef MaskedImageT::Variance VarianceT;
424 
425  MaskedImageT const& mimage = exposure.getMaskedImage();
426  ImageT const& image = *mimage.getImage();
427  CONST_PTR(lsst::afw::detection::Psf) psf = exposure.getPsf();
428 
429  int const x = image.positionToIndex(center.getX(), lsst::afw::image::X).first;
430  int const y = image.positionToIndex(center.getY(), lsst::afw::image::Y).first;
431 
432  if (!image.getBBox().contains(lsst::afw::geom::Extent2I(x,y) + image.getXY0())) {
433  throw LSST_EXCEPT(
435  _flagHandler.getDefinition(EDGE).doc,
436  EDGE
437  );
438  }
439  /*
440  * If a PSF is provided, smooth the object with that PSF
441  */
442  if (!psf) { // image is presumably already smoothed
443  // FIXME: the above logic is probably bad; this option should probably be a config parameter
444  //psf.reset(new meas_algorithms::DoubleGaussianPsf(11, 11, 0.01));
445  throw LSST_EXCEPT(
446  FatalAlgorithmError,
447  "SdssCentroid algorithm requires a Psf with every exposure"
448  );
449  }
450 
451  int binX = 1;
452  int binY = 1;
453  double xc=0., yc=0., dxc=0., dyc=0.; // estimated centre and error therein
454  for(int binsize = 1; binsize <= _ctrl.binmax; binsize *= 2) {
455  std::pair<MaskedImageT, double> result = smoothAndBinImage(psf, x, y, mimage, binX, binY, _flagHandler);
456  MaskedImageT const smoothedImage = result.first;
457  double const smoothingSigma = result.second;
458 
459  MaskedImageT::xy_locator mim = smoothedImage.xy_at(smoothedImage.getWidth()/2,
460  smoothedImage.getHeight()/2);
461 
462  try {
463  double sizeX2, sizeY2; // object widths^2 in x and y directions
464  double peakVal; // peak intensity in image
465 
466  doMeasureCentroidImpl(&xc, &dxc, &yc, &dyc, &sizeX2, &sizeY2, &peakVal, mim, smoothingSigma);
467 
468  if(binsize > 1) {
469  // dilate from the lower left corner of central pixel
470  xc = (xc + 0.5)*binX - 0.5;
471  dxc *= binX;
472  sizeX2 *= binX*binX;
473 
474  yc = (yc + 0.5)*binY - 0.5;
475  dyc *= binY;
476  sizeY2 *= binY*binY;
477  }
478 
479  xc += x; // xc, yc are measured relative to pixel (x, y)
480  yc += y;
481 
482  double const fac = _ctrl.wfac*(1 + smoothingSigma*smoothingSigma);
483  double const facX2 = fac*binX*binX;
484  double const facY2 = fac*binY*binY;
485 
486  if (sizeX2 < facX2 && ::pow(xc - x, 2) < facX2 &&
487  sizeY2 < facY2 && ::pow(yc - y, 2) < facY2) {
488  if (binsize > 1 || _ctrl.peakMin < 0.0 || peakVal > _ctrl.peakMin) {
489  break;
490  }
491  }
492 
493  if (sizeX2 >= facX2 || ::pow(xc - x, 2) >= facX2) {
494  binX *= 2;
495  }
496  if (sizeY2 >= facY2 || ::pow(yc - y, 2) >= facY2) {
497  binY *= 2;
498  }
499  }
501  throw LSST_EXCEPT(
503  _flagHandler.getDefinition(BAD_DATA).doc,
504  BAD_DATA
505  );
506  }
507  }
508  result.x = lsst::afw::image::indexToPosition(xc + image.getX0());
509  result.y = lsst::afw::image::indexToPosition(yc + image.getY0());
510 
511  result.xSigma = sqrt(dxc*dxc);
512  result.ySigma = sqrt(dyc*dyc);
513  measRecord.set(_centroidKey, result);
514  _flagHandler.setValue(measRecord, FAILURE, false);
515 
516 }
517 
518 
520  _flagHandler.handleFailure(measRecord, error);
521 }
522 
523 }}} // end namespace lsst::meas::base
524 
An ellipse core with quadrupole moments as parameters.
Definition: Quadrupole.h:45
The Sdss Centroid Algorithm.
Definition: SdssCentroid.h:65
ErrElement ySigma
1-Sigma uncertainty on y (sqrt of variance)
#define PTR(...)
Definition: base.h:41
double dx
Definition: ImageUtils.cc:90
double indexToPosition(double ind)
Convert image index to image position.
Definition: ImageUtils.h:54
Eigen matrix objects that present a view into an ndarray::Array.
boost::shared_ptr< ImageT > binImage(ImageT const &inImage, int const binX, int const binY, lsst::afw::math::Property const flags=lsst::afw::math::MEAN)
Definition: binImage.cc:48
int y
A class to contain the data, WCS, and other information needed to describe an image of the sky...
Definition: Exposure.h:48
Only the diagonal elements of the covariance matrix are provided.
Definition: constants.h:43
A reusable struct for centroid measurements.
definition of the Trace messaging facilities
ErrElement xSigma
1-Sigma uncertainty on x (sqrt of variance)
CentroidElement x
x (column) coordinate of the measured position
A C++ control class to handle SdssCentroidAlgorithm&#39;s configuration.
Definition: SdssCentroid.h:46
int binmax
&quot;maximum allowed binning&quot; ;
Definition: SdssCentroid.h:49
double dy
Definition: ImageUtils.cc:90
Exception to be thrown when a measurement algorithm experiences a known failure mode.
Definition: exceptions.h:48
An integer coordinate rectangle.
Definition: Box.h:53
double min
Definition: attributes.cc:216
afw::table::Key< double > sigma
Definition: GaussianPsf.cc:42
table::Key< table::Array< Kernel::Pixel > > image
Definition: FixedKernel.cc:117
int d
Definition: KDTree.cc:89
boost::shared_ptr< Kernel const > ConstPtr
Definition: Kernel.h:142
Include files required for standard LSST Exception handling.
double const PI
The ratio of a circle&#39;s circumference to diameter.
Definition: Angle.h:18
MaskedImageT getMaskedImage()
Return the MaskedImage.
Definition: Exposure.h:150
tbl::Schema schema
Definition: CoaddPsf.cc:324
int x
SafeCentroidExtractor _centroidExtractor
Definition: SdssCentroid.h:100
#define CONST_PTR(...)
Definition: base.h:47
Convolve and convolveAtAPoint functions for Image and Kernel.
afw::table::Centroid::MeasKey _centroidKey
Definition: GaussianFlux.cc:75
double peakMin
&quot;if the peak&#39;s less than this insist on binning at least once&quot; ;
Definition: SdssCentroid.h:50
boost::shared_ptr< lsst::afw::detection::Psf > getPsf()
Return the Exposure&#39;s Psf object.
Definition: Exposure.h:224
double getDeterminantRadius() const
Return the radius defined as the 4th root of the determinant of the quadrupole matrix.
#define LSST_EXCEPT(type,...)
Definition: Exception.h:46
double wfac
&quot;fiddle factor for adjusting the binning&quot; ;
Definition: SdssCentroid.h:51
void convolve(OutImageT &convolvedImage, InImageT const &inImage, KernelT const &kernel, ConvolutionControl const &convolutionControl=ConvolutionControl())
Convolve an Image or MaskedImage with a Kernel, setting pixels of an existing output image...
virtual void measure(afw::table::SourceRecord &measRecord, afw::image::Exposure< float > const &exposure) const
estimate sample mean
Definition: Statistics.h:67
A FunctorKey for CentroidResult.
boost::shared_ptr< math::Kernel const > getLocalKernel(geom::Point2D position=makeNullPoint(), image::Color color=image::Color()) const
Return a FixedKernel corresponding to the Psf image at the given point.
geom::ellipses::Quadrupole computeShape(geom::Point2D position=makeNullPoint(), image::Color color=image::Color()) const
Compute the ellipse corresponding to the second moments of the Psf.
void set(Key< T > const &key, U const &value)
Set value of a field for the given key.
Definition: BaseRecord.h:136
CentroidElement y
y (row) coordinate of the measured position
Record class that contains measurements made on a single exposure.
Definition: Source.h:81
A polymorphic base class for representing an image&#39;s Point Spread Function.
Definition: Psf.h:68
afw::table::Key< double > sigma2
virtual void fail(afw::table::SourceRecord &measRecord, MeasurementError *error=NULL) const
static FlagHandler addFields(afw::table::Schema &schema, std::string const &prefix, FlagDefinition const *begin, FlagDefinition const *end)
Definition: FlagHandler.cc:28