Loading [MathJax]/extensions/tex2jax.js
LSST Applications g0fba68d861+05816baf74,g1ec0fe41b4+f536777771,g1fd858c14a+a9301854fb,g35bb328faa+fcb1d3bbc8,g4af146b050+a5c07d5b1d,g4d2262a081+6e5fcc2a4e,g53246c7159+fcb1d3bbc8,g56a49b3a55+9c12191793,g5a012ec0e7+3632fc3ff3,g60b5630c4e+ded28b650d,g67b6fd64d1+ed4b5058f4,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g8352419a5c+fcb1d3bbc8,g87b7deb4dc+7b42cf88bf,g8852436030+e5453db6e6,g89139ef638+ed4b5058f4,g8e3bb8577d+d38d73bdbd,g9125e01d80+fcb1d3bbc8,g94187f82dc+ded28b650d,g989de1cb63+ed4b5058f4,g9d31334357+ded28b650d,g9f33ca652e+50a8019d8c,gabe3b4be73+1e0a283bba,gabf8522325+fa80ff7197,gb1101e3267+d9fb1f8026,gb58c049af0+f03b321e39,gb665e3612d+2a0c9e9e84,gb89ab40317+ed4b5058f4,gcf25f946ba+e5453db6e6,gd6cbbdb0b4+bb83cc51f8,gdd1046aedd+ded28b650d,gde0f65d7ad+941d412827,ge278dab8ac+d65b3c2b70,ge410e46f29+ed4b5058f4,gf23fb2af72+b7cae620c0,gf5e32f922b+fcb1d3bbc8,gf67bdafdda+ed4b5058f4,w.2025.16
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
PolynomialFunction2d.cc
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * Developed for the LSST Data Management System.
4 * This product includes software developed by the LSST Project
5 * (https://www.lsst.org).
6 * See the COPYRIGHT file at the top-level directory of this distribution
7 * for details of code ownership.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <https://www.gnu.org/licenses/>.
21 */
22
23#include <vector>
24
28
29
30namespace lsst { namespace geom { namespace polynomials {
31
32namespace {
33
34Eigen::VectorXd computePowers(double x, int n) {
35 Eigen::VectorXd r(n + 1);
36 r[0] = 1.0;
37 for (int i = 1; i <= n; ++i) {
38 r[i] = r[i - 1]*x;
39 }
40 return r;
41}
42
43} // anonymous
44
45
46template <PackingOrder packing>
48 auto const & basis = f.getBasis();
49 std::vector<SafeSum<double>> sums(basis.size());
50 std::size_t const n = basis.getOrder();
51 auto rPow = computePowers(basis.getScaling().getX().getScale(), n);
52 auto sPow = computePowers(basis.getScaling().getY().getScale(), n);
53 auto uPow = computePowers(basis.getScaling().getX().getShift(), n);
54 auto vPow = computePowers(basis.getScaling().getY().getShift(), n);
55 BinomialMatrix binomial(basis.getNested().getOrder());
56 for (auto const & i : basis.getIndices()) {
57 for (std::size_t j = 0; j <= i.nx; ++j) {
58 double tmp = binomial(i.nx, j)*uPow[j] *
59 f[i.flat]*rPow[i.nx]*sPow[i.ny];
60 for (std::size_t k = 0; k <= i.ny; ++k) {
61 sums[basis.index(i.nx - j, i.ny - k)] +=
62 binomial(i.ny, k)*vPow[k]*tmp;
63 }
64 }
65 }
66 Eigen::VectorXd result = Eigen::VectorXd::Zero(basis.size());
67 for (std::size_t i = 0; i < basis.size(); ++i) {
68 result[i] = static_cast<double>(sums[i]);
69 }
70 return makeFunction2d(basis.getNested(), result);
71}
72
75);
78);
79
80}}} // namespace lsst::geom::polynomials
A class that computes binomial coefficients up to a certain power.
Basis const & getBasis() const
Return the associated Basis2d object.
Definition Function2d.h:101
Low-level polynomials (including special polynomials) in C++.
Function2d< Basis > makeFunction2d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function2d of the appropriate type from a Basis2d and an Eigen object containing coefficient...
Definition Function2d.h:155
PolynomialFunction1d simplified(ScaledPolynomialFunction1d const &f)
Calculate the standard polynomial function that is equivalent to a scaled standard polynomial functio...
Function2d< ScaledPolynomialBasis2d< packing > > ScaledPolynomialFunction2d
A Function2d for scaled standard polynomials.
Function2d< PolynomialBasis2d< packing > > PolynomialFunction2d
A Function2d for standard polynomials.
void computePowers(Eigen::VectorXd &r, double x)
Fill an array with integer powers of x, so .