LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Protected Types | Protected Member Functions | Private Member Functions | List of all members
lsst::afw::math::ChebyshevBoundedField Class Reference

A BoundedField based on 2-d Chebyshev polynomials of the first kind. More...

#include <ChebyshevBoundedField.h>

Inheritance diagram for lsst::afw::math::ChebyshevBoundedField:
lsst::afw::table::io::PersistableFacade< ChebyshevBoundedField > lsst::afw::math::BoundedField lsst::afw::table::io::PersistableFacade< BoundedField > lsst::afw::table::io::Persistable

Public Types

using Control = ChebyshevBoundedFieldControl
 

Public Member Functions

 ChebyshevBoundedField (lsst::geom::Box2I const &bbox, ndarray::Array< double const, 2, 2 > const &coefficients)
 Initialize the field from its bounding box an coefficients.
 
 ChebyshevBoundedField (ChebyshevBoundedField const &)
 
 ChebyshevBoundedField (ChebyshevBoundedField &&)
 
ChebyshevBoundedFieldoperator= (ChebyshevBoundedField const &)=delete
 
ChebyshevBoundedFieldoperator= (ChebyshevBoundedField &&)=delete
 
 ~ChebyshevBoundedField () override
 
ndarray::Array< double const, 2, 2 > getCoefficients () const
 Return the coefficient matrix.
 
std::shared_ptr< ChebyshevBoundedFieldtruncate (Control const &ctrl) const
 Return a new ChebyshevBoudedField with maximum orders set by the given control object.
 
std::shared_ptr< ChebyshevBoundedFieldrelocate (lsst::geom::Box2I const &bbox) const
 Return a new ChebyshevBoundedField with domain set to the given bounding box.
 
double evaluate (lsst::geom::Point2D const &position) const override
 Evaluate the field at the given point.
 
double integrate () const override
 Compute the integral of this function over its bounding-box.
 
double mean () const override
 Compute the mean of this function over its bounding-box.
 
bool isPersistable () const noexcept override
 ChebyshevBoundedField is always persistable.
 
std::shared_ptr< BoundedFieldoperator* (double const scale) const override
 Return a scaled BoundedField.
 
bool operator== (BoundedField const &rhs) const override
 BoundedFields (of the same sublcass) are equal if their bounding boxes and parameters are equal.
 
virtual double evaluate (lsst::geom::Point2D const &position) const=0
 Evaluate the field at the given point.
 
double evaluate (double x, double y) const
 Evaluate the field at the given point.
 
virtual ndarray::Array< double, 1, 1 > evaluate (ndarray::Array< double const, 1 > const &x, ndarray::Array< double const, 1 > const &y) const
 Evaluate the field at multiple arbitrary points.
 
lsst::geom::Box2I getBBox () const
 Return the bounding box that defines the region where the field is valid.
 
template<typename T >
void fillImage (image::Image< T > &image, bool overlapOnly=false, int xStep=1, int yStep=1) const
 Assign the field to an image, overwriting values already present.
 
template<typename T >
void addToImage (image::Image< T > &image, double scaleBy=1.0, bool overlapOnly=false, int xStep=1, int yStep=1) const
 Add the field or a constant multiple of it to an image in-place.
 
template<typename T >
void multiplyImage (image::Image< T > &image, bool overlapOnly=false, int xStep=1, int yStep=1) const
 Multiply an image by the field in-place.
 
template<typename T >
void divideImage (image::Image< T > &image, bool overlapOnly=false, int xStep=1, int yStep=1) const
 Divide an image by the field in-place.
 
std::shared_ptr< BoundedFieldoperator/ (double scale) const
 
bool operator!= (BoundedField const &rhs) const
 BoundedFields (of the same sublcass) are equal if their bounding boxes and parameters are equal.
 
void writeFits (std::string const &fileName, std::string const &mode="w") const
 Write the object to a regular FITS file.
 
void writeFits (fits::MemFileManager &manager, std::string const &mode="w") const
 Write the object to a FITS image in memory.
 
void writeFits (fits::Fits &fitsfile) const
 Write the object to an already-open FITS object.
 

Static Public Member Functions

static std::shared_ptr< ChebyshevBoundedFieldfit (lsst::geom::Box2I const &bbox, ndarray::Array< double const, 1 > const &x, ndarray::Array< double const, 1 > const &y, ndarray::Array< double const, 1 > const &z, Control const &ctrl)
 Fit a Chebyshev approximation to non-gridded data with equal weights.
 
static std::shared_ptr< ChebyshevBoundedFieldfit (lsst::geom::Box2I const &bbox, ndarray::Array< double const, 1 > const &x, ndarray::Array< double const, 1 > const &y, ndarray::Array< double const, 1 > const &z, ndarray::Array< double const, 1 > const &w, Control const &ctrl)
 Fit a Chebyshev approximation to non-gridded data with unequal weights.
 
template<typename T >
static std::shared_ptr< ChebyshevBoundedFieldfit (image::Image< T > const &image, Control const &ctrl)
 Fit a Chebyshev approximation to gridded data with equal weights.
 
static std::shared_ptr< ChebyshevBoundedFieldreadFits (fits::Fits &fitsfile)
 Read an object from an already open FITS object.
 
static std::shared_ptr< ChebyshevBoundedFieldreadFits (std::string const &fileName, int hdu=fits::DEFAULT_HDU)
 Read an object from a regular FITS file.
 
static std::shared_ptr< ChebyshevBoundedFieldreadFits (fits::MemFileManager &manager, int hdu=fits::DEFAULT_HDU)
 Read an object from a FITS file in memory.
 
static std::shared_ptr< ChebyshevBoundedFielddynamicCast (std::shared_ptr< Persistable > const &ptr)
 Dynamically cast a shared_ptr.
 
static std::shared_ptr< BoundedFieldreadFits (fits::Fits &fitsfile)
 Read an object from an already open FITS object.
 
static std::shared_ptr< BoundedFieldreadFits (std::string const &fileName, int hdu=fits::DEFAULT_HDU)
 Read an object from a regular FITS file.
 
static std::shared_ptr< BoundedFieldreadFits (fits::MemFileManager &manager, int hdu=fits::DEFAULT_HDU)
 Read an object from a FITS file in memory.
 
static std::shared_ptr< BoundedFielddynamicCast (std::shared_ptr< Persistable > const &ptr)
 Dynamically cast a shared_ptr.
 

Protected Types

using OutputArchiveHandle = io::OutputArchiveHandle
 

Protected Member Functions

std::string getPersistenceName () const override
 Return the unique name used to persist this object and look up its factory.
 
std::string getPythonModule () const override
 Return the fully-qualified Python module that should be imported to guarantee that its factory is registered.
 
void write (OutputArchiveHandle &handle) const override
 Write the object to one or more catalogs.
 

Private Member Functions

std::string toString () const override
 

Detailed Description

A BoundedField based on 2-d Chebyshev polynomials of the first kind.

The 2-d Chebyshev polynomial used here is defined as:

\[ f(x,y) = \sum_i \sum_j a_{i,j} T_i(x) T_j(y) \]

where \(T_n(x)\) is the n-th order Chebyshev polynomial of \(x\) and \(a_{i,j}\) is the corresponding coefficient of the (i,j) polynomial term.

ChebyshevBoundedField supports fitting to gridded and non-gridded data, as well coefficient matrices with different x- and y-order.

There is currently quite a bit of duplication of functionality between ChebyshevBoundedField, ApproximateChebyshev, and Chebyshev1Function2; the intent is that ChebyshevBoundedField will ultimately replace ApproximateChebyshev and should be preferred over Chebyshev1Function2 when the parametrization interface that is part of the Function2 class is not needed.

Definition at line 76 of file ChebyshevBoundedField.h.

Member Typedef Documentation

◆ Control

Definition at line 79 of file ChebyshevBoundedField.h.

◆ OutputArchiveHandle

using lsst::afw::table::io::Persistable::OutputArchiveHandle = io::OutputArchiveHandle
protectedinherited

Definition at line 108 of file Persistable.h.

Constructor & Destructor Documentation

◆ ChebyshevBoundedField() [1/3]

lsst::afw::math::ChebyshevBoundedField::ChebyshevBoundedField ( lsst::geom::Box2I const & bbox,
ndarray::Array< double const, 2, 2 > const & coefficients )

Initialize the field from its bounding box an coefficients.

This constructor is mostly intended for testing purposes and persistence, but it also provides a way to initialize the object from Chebyshev coefficients derived from some external source.

Note that because the bounding box provided is always an integer bounding box, and LSST convention puts the center of each pixel at an integer, the actual floating-point domain of the Chebyshev functions is lsst::geom::Box2D(bbox), that is, the box that contains the entirety of all the pixels included in the integer bounding box.

The coefficients are ordered [y,x], so the shape is (orderY+1, orderX+1), and the arguments to the Chebyshev functions are transformed such that the region lsst::geom::Box2D(bbox) is mapped to [-1, 1]x[-1, 1].

Example:

bbox = lsst::geom::Box2I(lsst::geom::Point2I(10, 20), lsst::geom::Point2I(30, 40));
ndarray::Array<double, 2, 2> coeffs = ndarray::allocate(ndarray::makeVector(2, 2));
coeffs[0][0] = 1;
coeffs[1][0] = 2;
coeffs[0][1] = 3;
coeffs[1][1] = 4;
ndarray::Array<double, 2, 2> coeffs = ndarray::external(data);
poly = ChebyshevBoundedField(bbox, coeffs);

will result in the following polynomial:

\[ f(x,y) = 1 T_0(x) T_0(y) + 2 T_0(x) T_1(y) + 3 T_1(x) T_0(y) + 4 T_1(x) T_1(y) \]

Definition at line 59 of file ChebyshevBoundedField.cc.

62 _toChebyshevRange(makeChebyshevRangeTransform(lsst::geom::Box2D(bbox))),
63 _coefficients(coefficients) {}
AmpInfoBoxKey bbox
Definition Amplifier.cc:117
ndarray::Array< double const, 2, 2 > coefficients
BoundedField(BoundedField const &)=default
A floating-point coordinate rectangle geometry.
Definition Box.h:413

◆ ChebyshevBoundedField() [2/3]

lsst::afw::math::ChebyshevBoundedField::ChebyshevBoundedField ( ChebyshevBoundedField const & )
default

◆ ChebyshevBoundedField() [3/3]

lsst::afw::math::ChebyshevBoundedField::ChebyshevBoundedField ( ChebyshevBoundedField && )
default

◆ ~ChebyshevBoundedField()

lsst::afw::math::ChebyshevBoundedField::~ChebyshevBoundedField ( )
overridedefault

Member Function Documentation

◆ addToImage()

template<typename T >
template void lsst::afw::math::BoundedField::addToImage ( image::Image< T > & image,
double scaleBy = 1.0,
bool overlapOnly = false,
int xStep = 1,
int yStep = 1 ) const
inherited

Add the field or a constant multiple of it to an image in-place.

Parameters
[out]imageImage to add to.
[in]scaleByMultiply the field by this before adding it to the image.
[in]overlapOnlyIf true, only modify the region in the intersection of image.getBBox(image::PARENT) and this->getBBox().
[in]xStepDistance between grid points in X to evaluate; values between grid points will be linearly interpolated.
[in]yStepDistance between grid points in Y to evaluate; values between grid points will be linearly interpolated.
Exceptions
pex::exceptions::RuntimeErrorif the bounding boxes do not overlap and overlapOnly=false.

Definition at line 264 of file BoundedField.cc.

265 {
266 applyToImage(*this, img, ScaledAdd(scaleBy), overlapOnly, xStep, yStep);
267}
double scaleBy

◆ divideImage()

template<typename T >
template void lsst::afw::math::BoundedField::divideImage ( image::Image< T > & image,
bool overlapOnly = false,
int xStep = 1,
int yStep = 1 ) const
inherited

Divide an image by the field in-place.

Parameters
[out]imageImage to fill.
[in]overlapOnlyIf true, only modify the region in the intersection of image.getBBox(image::PARENT) and this->getBBox().
[in]xStepDistance between grid points in X to evaluate; values between grid points will be linearly interpolated.
[in]yStepDistance between grid points in Y to evaluate; values between grid points will be linearly interpolated.
Exceptions
pex::exceptions::RuntimeErrorif the bounding boxes do not overlap and overlapOnly=false.

Definition at line 275 of file BoundedField.cc.

275 {
276 applyToImage(*this, img, Divide(), overlapOnly, xStep, yStep);
277}

◆ dynamicCast() [1/2]

Dynamically cast a shared_ptr.

Dynamically cast a shared pointer and raise on failure.

You must provide an explicit template instantiation in the .cc file for each class that inherits from PersistableFacade. Designed to work around RTTI issues on macOS with hidden symbols;

Exceptions
lsst::pex::exceptions::LogicErrorif the cast fails

param[in] ptr The pointer to be cast.

Returns
The cast pointer.
Exceptions
lsst::pex::exceptions::TypeErrorIf the dynamic cast fails.

Definition at line 218 of file Persistable.cc.

◆ dynamicCast() [2/2]

Dynamically cast a shared_ptr.

Dynamically cast a shared pointer and raise on failure.

You must provide an explicit template instantiation in the .cc file for each class that inherits from PersistableFacade. Designed to work around RTTI issues on macOS with hidden symbols;

Exceptions
lsst::pex::exceptions::LogicErrorif the cast fails

param[in] ptr The pointer to be cast.

Returns
The cast pointer.
Exceptions
lsst::pex::exceptions::TypeErrorIf the dynamic cast fails.

Definition at line 218 of file Persistable.cc.

◆ evaluate() [1/4]

double lsst::afw::math::BoundedField::evaluate ( double x,
double y ) const
inline

Evaluate the field at the given point.

This delegates to the evaluate() method that takes lsst::geom::Point2D.

There is no bounds-checking on the given position; this is the responsibility of the user, who can almost always do it more efficiently.

Definition at line 75 of file BoundedField.h.

75{ return evaluate(lsst::geom::Point2D(x, y)); }
int y
Definition SpanSet.cc:48
double evaluate(lsst::geom::Point2D const &position) const override
Evaluate the field at the given point.

◆ evaluate() [2/4]

double lsst::afw::math::ChebyshevBoundedField::evaluate ( lsst::geom::Point2D const & position) const
overridevirtual

Evaluate the field at the given point.

This is the only abstract method to be implemented by subclasses.

Subclasses should not provide bounds checking on the given position; this is the responsibility of the user, who can almost always do it more efficiently.

Implements lsst::afw::math::BoundedField.

Definition at line 281 of file ChebyshevBoundedField.cc.

281 {
282 lsst::geom::Point2D p = _toChebyshevRange(position);
283 return evaluateFunction1d(RecursionArrayImitator(_coefficients, p.getX()), p.getY(),
284 _coefficients.getSize<0>());
285}

◆ evaluate() [3/4]

virtual double lsst::afw::math::BoundedField::evaluate ( lsst::geom::Point2D const & position) const
virtual

Evaluate the field at the given point.

This is the only abstract method to be implemented by subclasses.

Subclasses should not provide bounds checking on the given position; this is the responsibility of the user, who can almost always do it more efficiently.

Implements lsst::afw::math::BoundedField.

◆ evaluate() [4/4]

ndarray::Array< double, 1, 1 > lsst::afw::math::BoundedField::evaluate ( ndarray::Array< double const, 1 > const & x,
ndarray::Array< double const, 1 > const & y ) const
virtual

Evaluate the field at multiple arbitrary points.

Parameters
[in]xarray of x coordinates, same shape as y
[in]yarray of y coordinates, same shape as x
Returns
an array of output values, same shape as x and y

There is no bounds-checking on the given positions; this is the responsibility of the user, who can almost always do it more efficiently.

Reimplemented from lsst::afw::math::BoundedField.

Definition at line 87 of file BoundedField.cc.

41 {
42 ndarray::Array<double, 1, 1> out = ndarray::allocate(x.getSize<0>());
43 for (int i = 0, n = x.getSize<0>(); i < n; ++i) {
44 out[i] = evaluate(x[i], y[i]);
45 }
46 return out;
47}

◆ fillImage()

template<typename T >
template void lsst::afw::math::BoundedField::fillImage ( image::Image< T > & image,
bool overlapOnly = false,
int xStep = 1,
int yStep = 1 ) const
inherited

Assign the field to an image, overwriting values already present.

Parameters
[out]imageImage to fill.
[in]overlapOnlyIf true, only modify the region in the intersection of image.getBBox(image::PARENT) and this->getBBox().
[in]xStepDistance between grid points in X to evaluate; values between grid points will be linearly interpolated.
[in]yStepDistance between grid points in Y to evaluate; values between grid points will be linearly interpolated.
Exceptions
pex::exceptions::RuntimeErrorif the bounding boxes do not overlap and overlapOnly=false.

Definition at line 259 of file BoundedField.cc.

259 {
260 applyToImage(*this, img, Assign(), overlapOnly, xStep, yStep);
261}

◆ fit() [1/3]

template<typename T >
std::shared_ptr< ChebyshevBoundedField > lsst::afw::math::ChebyshevBoundedField::fit ( image::Image< T > const & image,
Control const & ctrl )
static

Fit a Chebyshev approximation to gridded data with equal weights.

Parameters
[in]imageThe Image containing the data to fit. image.getBBox(PARENT) is used as the bounding box of the BoundedField.
[in]ctrlSpecifies the orders and triangularity of the coefficient matrix.

Instantiated for float and double.

Note
if the image to be fit is a binned version of the actual image the field should correspond to, call relocate() with the unbinned image's bounding box after fitting.

Definition at line 193 of file ChebyshevBoundedField.cc.

194 {
195 // Initialize the result object, so we can make use of the AffineTransform it builds
196 lsst::geom::Box2I bbox = img.getBBox(image::PARENT);
198 // This packer object knows how to map the 2-d Chebyshev functions onto a 1-d array,
199 // using only those that the control says should have nonzero coefficients.
200 Packer const packer(ctrl);
201 ndarray::Array<double, 2, 2> matrix = makeMatrix(bbox, result->_toChebyshevRange, packer, ctrl);
202 // Flatten the data image into a 1-d vector.
203 ndarray::Array<double, 2, 2> imgCopy = ndarray::allocate(img.getArray().getShape());
204 imgCopy.deep() = img.getArray();
205 ndarray::Array<double const, 1, 1> z = ndarray::flatten<1>(imgCopy);
206 // Solve the linear least squares problem.
208 // Unpack the solution into a 2-d matrix, with zeros for values we didn't fit.
209 result->_coefficients = packer.unpack(lstsq.getSolution());
210 return result;
211}
py::object result
Definition _schema.cc:429
double z
Definition Match.cc:44
ChebyshevBoundedField(lsst::geom::Box2I const &bbox, ndarray::Array< double const, 2, 2 > const &coefficients)
Initialize the field from its bounding box an coefficients.
static LeastSquares fromDesignMatrix(ndarray::Array< T1, 2, C1 > const &design, ndarray::Array< T2, 1, C2 > const &data, Factorization factorization=NORMAL_EIGENSYSTEM)
Initialize from the design matrix and data vector given as ndarrays.
@ NORMAL_EIGENSYSTEM
Use the normal equations with a symmetric Eigensystem decomposition.
An integer coordinate rectangle.
Definition Box.h:55

◆ fit() [2/3]

std::shared_ptr< ChebyshevBoundedField > lsst::afw::math::ChebyshevBoundedField::fit ( lsst::geom::Box2I const & bbox,
ndarray::Array< double const, 1 > const & x,
ndarray::Array< double const, 1 > const & y,
ndarray::Array< double const, 1 > const & z,
Control const & ctrl )
static

Fit a Chebyshev approximation to non-gridded data with equal weights.

Parameters
[in]bboxInteger bounding box of the resulting approximation. All given points must lie within lsst::geom::Box2D(bbox).
[in]xArray of x coordinate values.
[in]yArray of y coordinate values.
[in]zArray of field values to be fit at each (x,y) point.
[in]ctrlSpecifies the orders and triangularity of the coefficient matrix.

Definition at line 148 of file ChebyshevBoundedField.cc.

152 {
153 // Initialize the result object, so we can make use of the AffineTransform it builds
155 // This packer object knows how to map the 2-d Chebyshev functions onto a 1-d array,
156 // using only those that the control says should have nonzero coefficients.
157 Packer const packer(ctrl);
158 // Create a "design matrix" for the linear least squares problem (A in min||Ax-b||)
159 ndarray::Array<double, 2, 2> matrix = makeMatrix(x, y, result->_toChebyshevRange, packer, ctrl);
160 // Solve the linear least squares problem.
162 // Unpack the solution into a 2-d matrix, with zeros for values we didn't fit.
163 result->_coefficients = packer.unpack(lstsq.getSolution());
164 return result;
165}

◆ fit() [3/3]

std::shared_ptr< ChebyshevBoundedField > lsst::afw::math::ChebyshevBoundedField::fit ( lsst::geom::Box2I const & bbox,
ndarray::Array< double const, 1 > const & x,
ndarray::Array< double const, 1 > const & y,
ndarray::Array< double const, 1 > const & z,
ndarray::Array< double const, 1 > const & w,
Control const & ctrl )
static

Fit a Chebyshev approximation to non-gridded data with unequal weights.

Parameters
[in]bboxInteger bounding box of the resulting approximation. All given points must lie within lsst::geom::Box2D(bbox).
[in]xArray of x coordinate values.
[in]yArray of y coordinate values.
[in]zArray of field values to be fit at each (x,y) point.
[in]wArray of weights for each point in the fit. For points with Gaussian noise, w = 1/sigma.
[in]ctrlSpecifies the orders and triangularity of the coefficient matrix.

Definition at line 167 of file ChebyshevBoundedField.cc.

172 {
173 // Initialize the result object, so we can make use of the AffineTransform it builds
175 // This packer object knows how to map the 2-d Chebyshev functions onto a 1-d array,
176 // using only those that the control says should have nonzero coefficients.
177 Packer const packer(ctrl);
178 // Create a "design matrix" for the linear least squares problem ('A' in min||Ax-b||)
179 ndarray::Array<double, 2, 2> matrix = makeMatrix(x, y, result->_toChebyshevRange, packer, ctrl);
180 // We want to do weighted least squares, so we multiply both the data vector 'b' and the
181 // matrix 'A' by the weights.
182 ndarray::asEigenArray(matrix).colwise() *= ndarray::asEigenArray(w);
183 ndarray::Array<double, 1, 1> wz = ndarray::copy(z);
184 ndarray::asEigenArray(wz) *= ndarray::asEigenArray(w);
185 // Solve the linear least squares problem.
187 // Unpack the solution into a 2-d matrix, with zeros for values we didn't fit.
188 result->_coefficients = packer.unpack(lstsq.getSolution());
189 return result;
190}
double w
Definition CoaddPsf.cc:70

◆ getBBox()

lsst::geom::Box2I lsst::afw::math::BoundedField::getBBox ( ) const
inlineinherited

Return the bounding box that defines the region where the field is valid.

Because this is an integer bounding box, its minimum and maximum positions are the centers of the pixels where the field is valid, but the field can be assumed to be valid to the edges of those pixels, which is the boundary you'd get by converting the returned lsst::geom::Box2I into a lsst::geom::Box2D.

Definition at line 112 of file BoundedField.h.

112{ return _bbox; }

◆ getCoefficients()

ndarray::Array< double const, 2, 2 > lsst::afw::math::ChebyshevBoundedField::getCoefficients ( ) const
inline

Return the coefficient matrix.

The coefficients are ordered [y,x], so the shape is (orderY+1, orderX+1).

Definition at line 180 of file ChebyshevBoundedField.h.

180{ return _coefficients; }

◆ getPersistenceName()

std::string lsst::afw::math::ChebyshevBoundedField::getPersistenceName ( ) const
overrideprotectedvirtual

Return the unique name used to persist this object and look up its factory.

Must be less than ArchiveIndexSchema::MAX_NAME_LENGTH characters.

Reimplemented from lsst::afw::table::io::Persistable.

Definition at line 357 of file ChebyshevBoundedField.cc.

357 {
358 return getChebyshevBoundedFieldPersistenceName();
359}

◆ getPythonModule()

std::string lsst::afw::math::ChebyshevBoundedField::getPythonModule ( ) const
overrideprotectedvirtual

Return the fully-qualified Python module that should be imported to guarantee that its factory is registered.

Must be less than ArchiveIndexSchema::MAX_MODULE_LENGTH characters.

Will be ignored if empty.

Reimplemented from lsst::afw::table::io::Persistable.

Definition at line 361 of file ChebyshevBoundedField.cc.

361{ return "lsst.afw.math"; }

◆ integrate()

double lsst::afw::math::ChebyshevBoundedField::integrate ( ) const
overridevirtual

Compute the integral of this function over its bounding-box.

Returns
The value of the integral.

Reimplemented from lsst::afw::math::BoundedField.

Definition at line 296 of file ChebyshevBoundedField.cc.

296 {
297 double result = 0;
298 double determinant = getBBox().getArea() / 4.0;
299 for (ndarray::Size j = 0; j < _coefficients.getSize<0>(); j++) {
300 for (ndarray::Size i = 0; i < _coefficients.getSize<1>(); i++) {
301 result += _coefficients[j][i] * integrateTn(i) * integrateTn(j);
302 }
303 }
304 return result * determinant;
305}
lsst::geom::Box2I getBBox() const
Return the bounding box that defines the region where the field is valid.
int getArea() const
Definition Box.h:189

◆ isPersistable()

bool lsst::afw::math::ChebyshevBoundedField::isPersistable ( ) const
inlineoverridevirtualnoexcept

ChebyshevBoundedField is always persistable.

Reimplemented from lsst::afw::table::io::Persistable.

Definition at line 205 of file ChebyshevBoundedField.h.

205{ return true; }

◆ mean()

double lsst::afw::math::ChebyshevBoundedField::mean ( ) const
overridevirtual

Compute the mean of this function over its bounding-box.

Returns
The value of the mean.

Reimplemented from lsst::afw::math::BoundedField.

Definition at line 307 of file ChebyshevBoundedField.cc.

307{ return integrate() / getBBox().getArea(); }
double integrate() const override
Compute the integral of this function over its bounding-box.

◆ multiplyImage()

template<typename T >
template void lsst::afw::math::BoundedField::multiplyImage ( image::Image< T > & image,
bool overlapOnly = false,
int xStep = 1,
int yStep = 1 ) const
inherited

Multiply an image by the field in-place.

Parameters
[out]imageImage to fill.
[in]overlapOnlyIf true, only modify the region in the intersection of image.getBBox(image::PARENT) and this->getBBox().
[in]xStepDistance between grid points in X to evaluate; values between grid points will be linearly interpolated.
[in]yStepDistance between grid points in Y to evaluate; values between grid points will be linearly interpolated.
Exceptions
pex::exceptions::RuntimeErrorif the bounding boxes do not overlap and overlapOnly=false.

Definition at line 270 of file BoundedField.cc.

270 {
271 applyToImage(*this, img, Multiply(), overlapOnly, xStep, yStep);
272}

◆ operator!=()

bool lsst::afw::math::BoundedField::operator!= ( BoundedField const & rhs) const
inlineinherited

BoundedFields (of the same sublcass) are equal if their bounding boxes and parameters are equal.

Definition at line 195 of file BoundedField.h.

195{ return !(*this == rhs); };

◆ operator*()

std::shared_ptr< BoundedField > lsst::afw::math::ChebyshevBoundedField::operator* ( double const scale) const
overridevirtual

Return a scaled BoundedField.

Parameters
[in]scaleScaling factor

Implements lsst::afw::math::BoundedField.

Definition at line 375 of file ChebyshevBoundedField.cc.

375 {
376 return std::make_shared<ChebyshevBoundedField>(getBBox(), ndarray::copy(getCoefficients() * scale));
377}
ndarray::Array< double const, 2, 2 > getCoefficients() const
Return the coefficient matrix.

◆ operator/()

std::shared_ptr< BoundedField > lsst::afw::math::BoundedField::operator/ ( double scale) const
inlineinherited

Definition at line 190 of file BoundedField.h.

190{ return (*this) * (1.0 / scale); }
scale(algorithm, min, max=None, frame=None)
Definition ds9.py:108

◆ operator=() [1/2]

ChebyshevBoundedField & lsst::afw::math::ChebyshevBoundedField::operator= ( ChebyshevBoundedField && )
delete

◆ operator=() [2/2]

ChebyshevBoundedField & lsst::afw::math::ChebyshevBoundedField::operator= ( ChebyshevBoundedField const & )
delete

◆ operator==()

bool lsst::afw::math::ChebyshevBoundedField::operator== ( BoundedField const & rhs) const
overridevirtual

BoundedFields (of the same sublcass) are equal if their bounding boxes and parameters are equal.

Implements lsst::afw::math::BoundedField.

Definition at line 379 of file ChebyshevBoundedField.cc.

379 {
380 auto rhsCasted = dynamic_cast<ChebyshevBoundedField const*>(&rhs);
381 if (!rhsCasted) return false;
382
383 return (getBBox() == rhsCasted->getBBox()) &&
384 (_coefficients.getShape() == rhsCasted->_coefficients.getShape()) &&
385 all(equal(_coefficients, rhsCasted->_coefficients));
386}
T equal(T... args)
bool all(CoordinateExpr< N > const &expr) noexcept
Return true if all elements are true.

◆ readFits() [1/6]

Read an object from an already open FITS object.

Parameters
[in]fitsfileFITS object to read from, already positioned at the desired HDU.

Definition at line 183 of file Persistable.h.

◆ readFits() [2/6]

static std::shared_ptr< BoundedField > lsst::afw::table::io::PersistableFacade< BoundedField >::readFits ( fits::Fits & fitsfile)
inlinestaticinherited

Read an object from an already open FITS object.

Parameters
[in]fitsfileFITS object to read from, already positioned at the desired HDU.

Definition at line 183 of file Persistable.h.

◆ readFits() [3/6]

static std::shared_ptr< ChebyshevBoundedField > lsst::afw::table::io::PersistableFacade< ChebyshevBoundedField >::readFits ( fits::MemFileManager & manager,
int hdu = fits::DEFAULT_HDU )
inlinestaticinherited

Read an object from a FITS file in memory.

Parameters
[in]managerManager for the memory to read from.
[in]hduHDU to read, where 0 is the primary. The special value of afw::fits::DEFAULT_HDU skips the primary HDU if it is empty.

Definition at line 205 of file Persistable.h.

◆ readFits() [4/6]

static std::shared_ptr< BoundedField > lsst::afw::table::io::PersistableFacade< BoundedField >::readFits ( fits::MemFileManager & manager,
int hdu = fits::DEFAULT_HDU )
inlinestaticinherited

Read an object from a FITS file in memory.

Parameters
[in]managerManager for the memory to read from.
[in]hduHDU to read, where 0 is the primary. The special value of afw::fits::DEFAULT_HDU skips the primary HDU if it is empty.

Definition at line 205 of file Persistable.h.

◆ readFits() [5/6]

static std::shared_ptr< ChebyshevBoundedField > lsst::afw::table::io::PersistableFacade< ChebyshevBoundedField >::readFits ( std::string const & fileName,
int hdu = fits::DEFAULT_HDU )
inlinestaticinherited

Read an object from a regular FITS file.

Parameters
[in]fileNameName of the file to read.
[in]hduHDU to read, where 0 is the primary. The special value of afw::fits::DEFAULT_HDU skips the primary HDU if it is empty.

Definition at line 194 of file Persistable.h.

◆ readFits() [6/6]

static std::shared_ptr< BoundedField > lsst::afw::table::io::PersistableFacade< BoundedField >::readFits ( std::string const & fileName,
int hdu = fits::DEFAULT_HDU )
inlinestaticinherited

Read an object from a regular FITS file.

Parameters
[in]fileNameName of the file to read.
[in]hduHDU to read, where 0 is the primary. The special value of afw::fits::DEFAULT_HDU skips the primary HDU if it is empty.

Definition at line 194 of file Persistable.h.

◆ relocate()

std::shared_ptr< ChebyshevBoundedField > lsst::afw::math::ChebyshevBoundedField::relocate ( lsst::geom::Box2I const & bbox) const

Return a new ChebyshevBoundedField with domain set to the given bounding box.

Because this leaves the coefficients unchanged, it is equivalent to transforming the function by the affine transform that maps the old box to the new one.

Definition at line 239 of file ChebyshevBoundedField.cc.

239 {
240 return std::make_shared<ChebyshevBoundedField>(bbox, _coefficients);
241}

◆ toString()

std::string lsst::afw::math::ChebyshevBoundedField::toString ( ) const
overrideprivatevirtual

Implements lsst::afw::math::BoundedField.

Definition at line 388 of file ChebyshevBoundedField.cc.

388 {
390 os << "ChebyshevBoundedField (" << _coefficients.getShape() << " coefficients in y,x)";
391 return os.str();
392}
std::ostream * os
Definition Schema.cc:557

◆ truncate()

std::shared_ptr< ChebyshevBoundedField > lsst::afw::math::ChebyshevBoundedField::truncate ( Control const & ctrl) const

Return a new ChebyshevBoudedField with maximum orders set by the given control object.

Definition at line 215 of file ChebyshevBoundedField.cc.

215 {
216 if (static_cast<std::size_t>(ctrl.orderX) >= _coefficients.getSize<1>()) {
217 throw LSST_EXCEPT(pex::exceptions::LengthError,
218 (boost::format("New x order (%d) exceeds old x order (%d)") % ctrl.orderX %
219 (_coefficients.getSize<1>() - 1))
220 .str());
221 }
222 if (static_cast<std::size_t>(ctrl.orderY) >= _coefficients.getSize<0>()) {
223 throw LSST_EXCEPT(pex::exceptions::LengthError,
224 (boost::format("New y order (%d) exceeds old y order (%d)") % ctrl.orderY %
225 (_coefficients.getSize<0>() - 1))
226 .str());
227 }
228 ndarray::Array<double, 2, 2> coefficients = ndarray::allocate(ctrl.orderY + 1, ctrl.orderX + 1);
229 coefficients.deep() = _coefficients[ndarray::view(0, ctrl.orderY + 1)(0, ctrl.orderX + 1)];
230 if (ctrl.triangular) {
231 Packer packer(ctrl);
232 ndarray::Array<double, 1, 1> packed = ndarray::allocate(packer.size);
233 packer.pack(packed, coefficients);
234 packer.unpack(coefficients, packed);
235 }
236 return std::make_shared<ChebyshevBoundedField>(getBBox(), coefficients);
237}
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition Exception.h:48

◆ write()

void lsst::afw::math::ChebyshevBoundedField::write ( OutputArchiveHandle & handle) const
overrideprotectedvirtual

Write the object to one or more catalogs.

The handle object passed to this function provides an interface for adding new catalogs and adding nested objects to the same archive (while checking for duplicates). See OutputArchiveHandle for more information.

Reimplemented from lsst::afw::table::io::Persistable.

Definition at line 363 of file ChebyshevBoundedField.cc.

363 {
364 PersistenceHelper const keys(_coefficients.getSize<1>(), _coefficients.getSize<0>());
365 table::BaseCatalog catalog = handle.makeCatalog(keys.schema);
366 std::shared_ptr<table::BaseRecord> record = catalog.addNew();
367 record->set(keys.orderX, _coefficients.getSize<1>() - 1);
368 record->set(keys.bbox, getBBox());
369 (*record)[keys.coefficients].deep() = ndarray::flatten<1>(_coefficients);
370 handle.saveCatalog(catalog);
371}
CatalogT< BaseRecord > BaseCatalog
Definition fwd.h:72

◆ writeFits() [1/3]

void lsst::afw::table::io::Persistable::writeFits ( fits::Fits & fitsfile) const
inherited

Write the object to an already-open FITS object.

Parameters
[in]fitsfileOpen FITS object to write to.

Definition at line 18 of file Persistable.cc.

18 {
19 OutputArchive archive;
20 archive.put(this);
21 archive.writeFits(fitsfile);
22}

◆ writeFits() [2/3]

void lsst::afw::table::io::Persistable::writeFits ( fits::MemFileManager & manager,
std::string const & mode = "w" ) const
inherited

Write the object to a FITS image in memory.

Parameters
[in]managerName of the file to write to.
[in]modeIf "w", any existing file with the given name will be overwritten. If "a", new HDUs will be appended to an existing file.

Definition at line 29 of file Persistable.cc.

29 {
30 fits::Fits fitsfile(manager, mode, fits::Fits::AUTO_CLOSE | fits::Fits::AUTO_CHECK);
31 writeFits(fitsfile);
32}
void writeFits(std::string const &fileName, std::string const &mode="w") const
Write the object to a regular FITS file.

◆ writeFits() [3/3]

void lsst::afw::table::io::Persistable::writeFits ( std::string const & fileName,
std::string const & mode = "w" ) const
inherited

Write the object to a regular FITS file.

Parameters
[in]fileNameName of the file to write to.
[in]modeIf "w", any existing file with the given name will be overwritten. If "a", new HDUs will be appended to an existing file.

Definition at line 24 of file Persistable.cc.

24 {
25 fits::Fits fitsfile(fileName, mode, fits::Fits::AUTO_CLOSE | fits::Fits::AUTO_CHECK);
26 writeFits(fitsfile);
27}

The documentation for this class was generated from the following files: