LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
Public Member Functions | List of all members
lsst::afw::math::GaussianProcess< T > Class Template Reference

Stores values of a function sampled on an image and allows you to interpolate the function to unsampled points. More...

#include <GaussianProcess.h>

Public Member Functions

 GaussianProcess (const GaussianProcess &)=delete
 
GaussianProcessoperator= (const GaussianProcess &)=delete
 
 GaussianProcess (GaussianProcess &&)=delete
 
GaussianProcessoperator= (GaussianProcess &&)=delete
 
 GaussianProcess (ndarray::Array< T, 2, 2 > const &dataIn, ndarray::Array< T, 1, 1 > const &ff, std::shared_ptr< Covariogram< T > > const &covarIn)
 This is the constructor you call if you do not wish to normalize the positions of your data points and you have only one function.
 
 GaussianProcess (ndarray::Array< T, 2, 2 > const &dataIn, ndarray::Array< T, 1, 1 > const &mn, ndarray::Array< T, 1, 1 > const &mx, ndarray::Array< T, 1, 1 > const &ff, std::shared_ptr< Covariogram< T > > const &covarIn)
 This is the constructor you call if you want the positions of your data points normalized by the span of each dimension and you have only one function.
 
 GaussianProcess (ndarray::Array< T, 2, 2 > const &dataIn, ndarray::Array< T, 2, 2 > const &ff, std::shared_ptr< Covariogram< T > > const &covarIn)
 this is the constructor to use in the case of a vector of input functions and an unbounded/unnormalized parameter space
 
 GaussianProcess (ndarray::Array< T, 2, 2 > const &dataIn, ndarray::Array< T, 1, 1 > const &mn, ndarray::Array< T, 1, 1 > const &mx, ndarray::Array< T, 2, 2 > const &ff, std::shared_ptr< Covariogram< T > > const &covarIn)
 this is the constructor to use in the case of a vector of input functions using minima and maxima in parameter space
 
int getNPoints () const
 return the number of data points stored in the GaussianProcess
 
int getDim () const
 return the dimensionality of data points stored in the GaussianProcess
 
void getData (ndarray::Array< T, 2, 2 > pts, ndarray::Array< T, 1, 1 > fn, ndarray::Array< int, 1, 1 > indices) const
 Return a sub-sample the data underlying the Gaussian Process.
 
void getData (ndarray::Array< T, 2, 2 > pts, ndarray::Array< T, 2, 2 > fn, ndarray::Array< int, 1, 1 > indices) const
 Return a sub-sample the data underlying the Gaussian Process.
 
interpolate (ndarray::Array< T, 1, 1 > variance, ndarray::Array< T, 1, 1 > const &vin, int numberOfNeighbors) const
 Interpolate the function value at one point using a specified number of nearest neighbors.
 
void interpolate (ndarray::Array< T, 1, 1 > mu, ndarray::Array< T, 1, 1 > variance, ndarray::Array< T, 1, 1 > const &vin, int numberOfNeighbors) const
 This is the version of GaussianProcess::interpolate for a vector of functions.
 
selfInterpolate (ndarray::Array< T, 1, 1 > variance, int dex, int numberOfNeighbors) const
 This method will interpolate the function on a data point for purposes of optimizing hyper parameters.
 
void selfInterpolate (ndarray::Array< T, 1, 1 > mu, ndarray::Array< T, 1, 1 > variance, int dex, int numberOfNeighbors) const
 The version of selfInterpolate called for a vector of functions.
 
void batchInterpolate (ndarray::Array< T, 1, 1 > mu, ndarray::Array< T, 1, 1 > variance, ndarray::Array< T, 2, 2 > const &queries) const
 Interpolate a list of query points using all of the input data (rather than nearest neighbors)
 
void batchInterpolate (ndarray::Array< T, 1, 1 > mu, ndarray::Array< T, 2, 2 > const &queries) const
 Interpolate a list of points using all of the data.
 
void batchInterpolate (ndarray::Array< T, 2, 2 > mu, ndarray::Array< T, 2, 2 > variance, ndarray::Array< T, 2, 2 > const &queries) const
 This is the version of batchInterpolate (with variances) that is called for a vector of functions.
 
void batchInterpolate (ndarray::Array< T, 2, 2 > mu, ndarray::Array< T, 2, 2 > const &queries) const
 This is the version of batchInterpolate (without variances) that is called for a vector of functions.
 
void addPoint (ndarray::Array< T, 1, 1 > const &vin, T f)
 Add a point to the pool of data used by GaussianProcess for interpolation.
 
void addPoint (ndarray::Array< T, 1, 1 > const &vin, ndarray::Array< T, 1, 1 > const &f)
 This is the version of addPoint that is called for a vector of functions.
 
void removePoint (int dex)
 This will remove a point from the data set.
 
void setKrigingParameter (T kk)
 Assign a value to the Kriging paramter.
 
void setCovariogram (std::shared_ptr< Covariogram< T > > const &covar)
 Assign a different covariogram to this GaussianProcess.
 
void setLambda (T lambda)
 set the value of the hyperparameter _lambda
 
GaussianProcessTimergetTimes () const
 Give the user acces to _timer, an object keeping track of the time spent on various processes within interpolate.
 

Detailed Description

template<typename T>
class lsst::afw::math::GaussianProcess< T >

Stores values of a function sampled on an image and allows you to interpolate the function to unsampled points.

The data will be stored in a KD Tree for easy nearest neighbor searching when interpolating.

The array _function[] will contain the values of the function being interpolated. You can provide a two dimensional array _function[][] if you wish to interpolate a vector of functions. In this case _function[i][j] is the jth function associated with the ith data point. Note: presently, the covariance matrices do not relate elements of _function[i][] to each other, so the variances returned will be identical for all functions evaluated at the same point in parameter space.

_data[i][j] will be the jth component of the ith data point.

_max and _min contain the maximum and minimum values of each dimension in parameter space (if applicable) so that data points can be normalized by _max-_min to keep distances between points reasonable. This is an option specified by calling the relevant constructor.

Definition at line 471 of file GaussianProcess.h.

Constructor & Destructor Documentation

◆ GaussianProcess() [1/6]

template<typename T >
lsst::afw::math::GaussianProcess< T >::GaussianProcess ( const GaussianProcess< T > & )
delete

◆ GaussianProcess() [2/6]

template<typename T >
lsst::afw::math::GaussianProcess< T >::GaussianProcess ( GaussianProcess< T > && )
delete

◆ GaussianProcess() [3/6]

template<typename T >
lsst::afw::math::GaussianProcess< T >::GaussianProcess ( ndarray::Array< T, 2, 2 > const & dataIn,
ndarray::Array< T, 1, 1 > const & ff,
std::shared_ptr< Covariogram< T > > const & covarIn )

This is the constructor you call if you do not wish to normalize the positions of your data points and you have only one function.

Parameters
[in]dataInan ndarray containing the data points; the ith row of datain is the ith data point
[in]ffa one-dimensional ndarray containing the values of the scalar function associated with each data point. This is the function you are interpolating
[in]covarInis the input covariogram

Definition at line 751 of file GaussianProcess.cc.

754{
755 int i;
756
757 _covariogram = covarIn;
758
759 _npts = dataIn.template getSize<0>();
760 _dimensions = dataIn.template getSize<1>();
761
762 _room = _npts;
763 _roomStep = 5000;
764
765 _nFunctions = 1;
766 _function = allocate(ndarray::makeVector(_npts, 1));
767
768 if (ff.getNumElements() != static_cast<ndarray::Size>(_npts)) {
770 "You did not pass in the same number of data points as function values\n");
771 }
772
773 for (i = 0; i < _npts; i++) _function[i][0] = ff[i];
774
775 _krigingParameter = T(1.0);
776 _lambda = T(1.0e-5);
777
778 _useMaxMin = 0;
779
780 _kdTree.Initialize(dataIn);
781
782 _npts = _kdTree.getNPoints();
783}
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition Exception.h:48
Reports errors that are due to events beyond the control of the program.
Definition Runtime.h:104

◆ GaussianProcess() [4/6]

template<typename T >
lsst::afw::math::GaussianProcess< T >::GaussianProcess ( ndarray::Array< T, 2, 2 > const & dataIn,
ndarray::Array< T, 1, 1 > const & mn,
ndarray::Array< T, 1, 1 > const & mx,
ndarray::Array< T, 1, 1 > const & ff,
std::shared_ptr< Covariogram< T > > const & covarIn )

This is the constructor you call if you want the positions of your data points normalized by the span of each dimension and you have only one function.

Parameters
[in]dataInan ndarray containing the data points; the ith row of datain is the ith data point
[in]mna one-dimensional ndarray containing the minimum values of each dimension (for normalizing the positions of data points)
[in]mxa one-dimensional ndarray containing the maximum values of each dimension (for normalizing the positions of data points)
[in]ffa one-dimensional ndarray containing the values of the scalar function associated with each data point. This is the function you are interpolating
[in]covarInis the input covariogram

Note: the member variable _useMaxMin will allow the code to remember which constructor you invoked

Definition at line 786 of file GaussianProcess.cc.

788 {
789 int i, j;
790 ndarray::Array<T, 2, 2> normalizedData;
791
792 _covariogram = covarIn;
793
794 _npts = dataIn.template getSize<0>();
795 _dimensions = dataIn.template getSize<1>();
796 _room = _npts;
797 _roomStep = 5000;
798
799 if (ff.getNumElements() != static_cast<ndarray::Size>(_npts)) {
801 "You did not pass in the same number of data points as function values\n");
802 }
803
804 if (mn.getNumElements() != static_cast<ndarray::Size>(_dimensions) ||
805 mx.getNumElements() != static_cast<ndarray::Size>(_dimensions)) {
807 "Your min/max values have different dimensionality than your data points\n");
808 }
809
810 _krigingParameter = T(1.0);
811
812 _lambda = T(1.0e-5);
813 _krigingParameter = T(1.0);
814
815 _max = allocate(ndarray::makeVector(_dimensions));
816 _min = allocate(ndarray::makeVector(_dimensions));
817 _max.deep() = mx;
818 _min.deep() = mn;
819 _useMaxMin = 1;
820 normalizedData = allocate(ndarray::makeVector(_npts, _dimensions));
821 for (i = 0; i < _npts; i++) {
822 for (j = 0; j < _dimensions; j++) {
823 normalizedData[i][j] = (dataIn[i][j] - _min[j]) / (_max[j] - _min[j]);
824 // note the normalization by _max - _min in each dimension
825 }
826 }
827
828 _kdTree.Initialize(normalizedData);
829
830 _npts = _kdTree.getNPoints();
831 _nFunctions = 1;
832 _function = allocate(ndarray::makeVector(_npts, 1));
833 for (i = 0; i < _npts; i++) _function[i][0] = ff[i];
834}

◆ GaussianProcess() [5/6]

template<typename T >
lsst::afw::math::GaussianProcess< T >::GaussianProcess ( ndarray::Array< T, 2, 2 > const & dataIn,
ndarray::Array< T, 2, 2 > const & ff,
std::shared_ptr< Covariogram< T > > const & covarIn )

this is the constructor to use in the case of a vector of input functions and an unbounded/unnormalized parameter space

Parameters
[in]dataIncontains the data points, as in other constructors
[in]ffcontains the functions. Each row of ff corresponds to a datapoint. Each column corresponds to a function (ff[i][j] is the jth function associated with the ith data point)
[in]covarInis the input covariogram

Definition at line 837 of file GaussianProcess.cc.

838 {
839 _covariogram = covarIn;
840
841 _npts = dataIn.template getSize<0>();
842 _dimensions = dataIn.template getSize<1>();
843
844 _room = _npts;
845 _roomStep = 5000;
846
847 if (ff.template getSize<0>() != static_cast<ndarray::Size>(_npts)) {
849 "You did not pass in the same number of data points as function values\n");
850 }
851
852 _nFunctions = ff.template getSize<1>();
853 _function = allocate(ndarray::makeVector(_npts, _nFunctions));
854 _function.deep() = ff;
855
856 _krigingParameter = T(1.0);
857
858 _lambda = T(1.0e-5);
859
860 _useMaxMin = 0;
861
862 _kdTree.Initialize(dataIn);
863
864 _npts = _kdTree.getNPoints();
865}

◆ GaussianProcess() [6/6]

template<typename T >
lsst::afw::math::GaussianProcess< T >::GaussianProcess ( ndarray::Array< T, 2, 2 > const & dataIn,
ndarray::Array< T, 1, 1 > const & mn,
ndarray::Array< T, 1, 1 > const & mx,
ndarray::Array< T, 2, 2 > const & ff,
std::shared_ptr< Covariogram< T > > const & covarIn )

this is the constructor to use in the case of a vector of input functions using minima and maxima in parameter space

Parameters
[in]dataIncontains the data points, as in other constructors
[in]mncontains the minimum allowed values of the parameters in parameter space
[in]mxcontains the maximum allowed values of the parameters in parameter space
[in]ffcontains the functions. Each row of ff corresponds to a datapoint. Each column corresponds to a function (ff[i][j] is the jth function associated with the ith data point)
[in]covarInis the input covariogram

Definition at line 868 of file GaussianProcess.cc.

870 {
871 int i, j;
872 ndarray::Array<T, 2, 2> normalizedData;
873
874 _covariogram = covarIn;
875
876 _npts = dataIn.template getSize<0>();
877 _dimensions = dataIn.template getSize<1>();
878
879 _room = _npts;
880 _roomStep = 5000;
881
882 if (ff.template getSize<0>() != static_cast<ndarray::Size>(_npts)) {
884 "You did not pass in the same number of data points as function values\n");
885 }
886
887 if (mn.getNumElements() != static_cast<ndarray::Size>(_dimensions) ||
888 mx.getNumElements() != static_cast<ndarray::Size>(_dimensions)) {
890 "Your min/max values have different dimensionality than your data points\n");
891 }
892
893 _krigingParameter = T(1.0);
894
895 _lambda = T(1.0e-5);
896 _krigingParameter = T(1.0);
897
898 _max = allocate(ndarray::makeVector(_dimensions));
899 _min = allocate(ndarray::makeVector(_dimensions));
900 _max.deep() = mx;
901 _min.deep() = mn;
902 _useMaxMin = 1;
903 normalizedData = allocate(ndarray::makeVector(_npts, _dimensions));
904 for (i = 0; i < _npts; i++) {
905 for (j = 0; j < _dimensions; j++) {
906 normalizedData[i][j] = (dataIn[i][j] - _min[j]) / (_max[j] - _min[j]);
907 // note the normalization by _max - _min in each dimension
908 }
909 }
910
911 _kdTree.Initialize(normalizedData);
912 _npts = _kdTree.getNPoints();
913 _nFunctions = ff.template getSize<1>();
914 _function = allocate(ndarray::makeVector(_npts, _nFunctions));
915 _function.deep() = ff;
916}

Member Function Documentation

◆ addPoint() [1/2]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::addPoint ( ndarray::Array< T, 1, 1 > const & vin,
ndarray::Array< T, 1, 1 > const & f )

This is the version of addPoint that is called for a vector of functions.

Exceptions
pex::exceptions::RuntimeErrorif the tree does not end up properly constructed (the exception is actually thrown by KdTree<T>::addPoint() )

Note: excessive use of addPoint and removePoint can result in an unbalanced KdTree, which will slow down nearest neighbor searches

Definition at line 1907 of file GaussianProcess.cc.

1907 {
1908 if (vin.getNumElements() != static_cast<ndarray::Size>(_dimensions)) {
1910 "You are trying to add a point of the wrong dimensionality to "
1911 "your GaussianProcess.\n");
1912 }
1913
1914 if (f.template getSize<0>() != static_cast<ndarray::Size>(_nFunctions)) {
1916 "You are not adding the correct number of function values to "
1917 "your GaussianProcess.\n");
1918 }
1919
1920 int i, j;
1921
1922 ndarray::Array<T, 1, 1> v;
1923 v = allocate(ndarray::makeVector(_dimensions));
1924
1925 for (i = 0; i < _dimensions; i++) {
1926 v[i] = vin[i];
1927 if (_useMaxMin == 1) {
1928 v[i] = (v[i] - _min[i]) / (_max[i] - _min[i]);
1929 }
1930 }
1931
1932 if (_npts == _room) {
1933 ndarray::Array<T, 2, 2> buff;
1934 buff = allocate(ndarray::makeVector(_npts, _nFunctions));
1935 buff.deep() = _function;
1936
1937 _room += _roomStep;
1938 _function = allocate(ndarray::makeVector(_room, _nFunctions));
1939 for (i = 0; i < _npts; i++) {
1940 for (j = 0; j < _nFunctions; j++) {
1941 _function[i][j] = buff[i][j];
1942 }
1943 }
1944 }
1945 for (i = 0; i < _nFunctions; i++) _function[_npts][i] = f[i];
1946
1947 _kdTree.addPoint(v);
1948 _npts = _kdTree.getNPoints();
1949}

◆ addPoint() [2/2]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::addPoint ( ndarray::Array< T, 1, 1 > const & vin,
T f )

Add a point to the pool of data used by GaussianProcess for interpolation.

Parameters
[in]vina one-dimensional ndarray storing the point in parameter space that you are adding
[in]fthe value of the function at that point
Exceptions
pex::exceptions::RuntimeErrorif you call this when you should have called the version taking a vector of functions (below)
pex::exceptions::RuntimeErrorif the tree does not end up properly constructed (the exception is actually thrown by KdTree<T>::addPoint() )

Note: excessive use of addPoint and removePoint can result in an unbalanced KdTree, which will slow down nearest neighbor searches

Definition at line 1862 of file GaussianProcess.cc.

1862 {
1863 int i, j;
1864
1865 if (_nFunctions != 1) {
1867 "You are calling the wrong addPoint; you need a vector of functions\n");
1868 }
1869
1870 if (vin.getNumElements() != static_cast<ndarray::Size>(_dimensions)) {
1872 "You are trying to add a point of the wrong dimensionality to "
1873 "your GaussianProcess.\n");
1874 }
1875
1876 ndarray::Array<T, 1, 1> v;
1877 v = allocate(ndarray::makeVector(_dimensions));
1878
1879 for (i = 0; i < _dimensions; i++) {
1880 v[i] = vin[i];
1881 if (_useMaxMin == 1) {
1882 v[i] = (v[i] - _min[i]) / (_max[i] - _min[i]);
1883 }
1884 }
1885
1886 if (_npts == _room) {
1887 ndarray::Array<T, 2, 2> buff;
1888 buff = allocate(ndarray::makeVector(_npts, _nFunctions));
1889 buff.deep() = _function;
1890
1891 _room += _roomStep;
1892 _function = allocate(ndarray::makeVector(_room, _nFunctions));
1893 for (i = 0; i < _npts; i++) {
1894 for (j = 0; j < _nFunctions; j++) {
1895 _function[i][j] = buff[i][j];
1896 }
1897 }
1898 }
1899
1900 _function[_npts][0] = f;
1901
1902 _kdTree.addPoint(v);
1903 _npts = _kdTree.getNPoints();
1904}

◆ batchInterpolate() [1/4]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::batchInterpolate ( ndarray::Array< T, 1, 1 > mu,
ndarray::Array< T, 1, 1 > variance,
ndarray::Array< T, 2, 2 > const & queries ) const

Interpolate a list of query points using all of the input data (rather than nearest neighbors)

Parameters
[out]mua 1-dimensional ndarray where the interpolated function values will be stored
[out]variancea 1-dimensional ndarray where the corresponding variances in the function value will be stored
[in]queriesa 2-dimensional ndarray containing the points to be interpolated. queries[i][j] is the jth component of the ith point

This method will attempt to construct a _npts X _npts covariance matrix C and solve the problem Cx=b. Be wary of using it in the case where _npts is very large.

This version of the method will also return variances for all of the query points. That is a very time consuming calculation relative to just returning estimates for the function. Consider calling the version of this method that does not calculate variances (below). The difference in time spent is an order of magnitude for 189 data points and 1,000,000 interpolations.

Definition at line 1488 of file GaussianProcess.cc.

1489 {
1490 int i, j;
1491
1492 ndarray::Size nQueries = queries.template getSize<0>();
1493
1494 if (_nFunctions != 1) {
1496 "Your mu and variance arrays do not have room for all of the functions "
1497 "as you are trying to interpolate\n");
1498 }
1499
1500 if (mu.getNumElements() != nQueries || variance.getNumElements() != nQueries) {
1502 "Your mu and variance arrays do not have room for all of the points "
1503 "at which you are trying to interpolate your function.\n");
1504 }
1505
1506 if (queries.template getSize<1>() != static_cast<ndarray::Size>(_dimensions)) {
1508 "The points you passed to batchInterpolate are of the wrong "
1509 "dimensionality for your Gaussian Process\n");
1510 }
1511
1512 T fbar;
1513 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> batchCovariance, batchbb, batchxx;
1514 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> queryCovariance;
1515 Eigen::LDLT<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > ldlt;
1516
1517 ndarray::Array<T, 1, 1> v1;
1518
1519 _timer.start();
1520
1521 v1 = allocate(ndarray::makeVector(_dimensions));
1522 batchbb.resize(_npts, 1);
1523 batchxx.resize(_npts, 1);
1524 batchCovariance.resize(_npts, _npts);
1525 queryCovariance.resize(_npts, 1);
1526
1527 for (i = 0; i < _npts; i++) {
1528 batchCovariance(i, i) = (*_covariogram)(_kdTree.getData(i), _kdTree.getData(i)) + _lambda;
1529 for (j = i + 1; j < _npts; j++) {
1530 batchCovariance(i, j) = (*_covariogram)(_kdTree.getData(i), _kdTree.getData(j));
1531 batchCovariance(j, i) = batchCovariance(i, j);
1532 }
1533 }
1534 _timer.addToIteration();
1535
1536 ldlt.compute(batchCovariance);
1537
1538 fbar = 0.0;
1539 for (i = 0; i < _npts; i++) {
1540 fbar += _function[i][0];
1541 }
1542 fbar = fbar / T(_npts);
1543
1544 for (i = 0; i < _npts; i++) {
1545 batchbb(i, 0) = _function[i][0] - fbar;
1546 }
1547 batchxx = ldlt.solve(batchbb);
1548 _timer.addToEigen();
1549
1550 for (ndarray::Size ii = 0; ii < nQueries; ii++) {
1551 for (i = 0; i < _dimensions; i++) v1[i] = queries[ii][i];
1552 if (_useMaxMin == 1) {
1553 for (i = 0; i < _dimensions; i++) v1[i] = (v1[i] - _min[i]) / (_max[i] - _min[i]);
1554 }
1555 mu(ii) = fbar;
1556 for (i = 0; i < _npts; i++) {
1557 mu(ii) += batchxx(i) * (*_covariogram)(v1, _kdTree.getData(i));
1558 }
1559 }
1560 _timer.addToIteration();
1561
1562 for (ndarray::Size ii = 0; ii < nQueries; ii++) {
1563 for (i = 0; i < _dimensions; i++) v1[i] = queries[ii][i];
1564 if (_useMaxMin == 1) {
1565 for (i = 0; i < _dimensions; i++) v1[i] = (v1[i] - _min[i]) / (_max[i] - _min[i]);
1566 }
1567
1568 for (i = 0; i < _npts; i++) {
1569 batchbb(i, 0) = (*_covariogram)(v1, _kdTree.getData(i));
1570 queryCovariance(i, 0) = batchbb(i, 0);
1571 }
1572 batchxx = ldlt.solve(batchbb);
1573
1574 variance[ii] = (*_covariogram)(v1, v1) + _lambda;
1575
1576 for (i = 0; i < _npts; i++) {
1577 variance[ii] -= queryCovariance(i, 0) * batchxx(i);
1578 }
1579
1580 variance[ii] = variance[ii] * _krigingParameter;
1581 }
1582
1583 _timer.addToVariance();
1584 _timer.addToTotal(nQueries);
1585}
afw::table::Key< afw::table::Array< VariancePixelT > > variance
void addToVariance()
Adds time to _varianceTime.
void addToIteration()
Adds time to _iterationTime.
void start()
Starts the timer for an individual call to an interpolation routine.
void addToEigen()
Adds time to _eigenTime.
void addToTotal(int i)
Adds time to _totalTime and adds counts to _interpolationCount.

◆ batchInterpolate() [2/4]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::batchInterpolate ( ndarray::Array< T, 1, 1 > mu,
ndarray::Array< T, 2, 2 > const & queries ) const

Interpolate a list of points using all of the data.

Do not return variances for the interpolation.

Parameters
[out]mua 1-dimensional ndarray where the interpolated function values will be stored
[in]queriesa 2-dimensional ndarray containing the points to be interpolated. queries[i][j] is the jth component of the ith point

This method will attempt to construct a _npts X _npts covariance matrix C and solve the problem Cx=b. Be wary of using it in the case where _npts is very large.

This version of the method does not return variances. It is an order of magnitude faster than the version of the method that does return variances (timing done on a case with 189 data points and 1 million query points).

Definition at line 1696 of file GaussianProcess.cc.

1697 {
1698 int i, j;
1699
1700 ndarray::Size nQueries = queries.template getSize<0>();
1701
1702 if (_nFunctions != 1) {
1704 "Your output array does not have enough room for all of the functions "
1705 "you are trying to interpolate.\n");
1706 }
1707
1708 if (queries.template getSize<1>() != static_cast<ndarray::Size>(_dimensions)) {
1710 "The points at which you are trying to interpolate your function are "
1711 "of the wrong dimensionality.\n");
1712 }
1713
1714 if (mu.getNumElements() != nQueries) {
1716 "Your output array does not have enough room for all of the points "
1717 "at which you are trying to interpolate your function.\n");
1718 }
1719
1720 T fbar;
1721 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> batchCovariance, batchbb, batchxx;
1722 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> queryCovariance;
1723 Eigen::LDLT<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > ldlt;
1724
1725 ndarray::Array<T, 1, 1> v1;
1726
1727 _timer.start();
1728
1729 v1 = allocate(ndarray::makeVector(_dimensions));
1730
1731 batchbb.resize(_npts, 1);
1732 batchxx.resize(_npts, 1);
1733 batchCovariance.resize(_npts, _npts);
1734 queryCovariance.resize(_npts, 1);
1735
1736 for (i = 0; i < _npts; i++) {
1737 batchCovariance(i, i) = (*_covariogram)(_kdTree.getData(i), _kdTree.getData(i)) + _lambda;
1738 for (j = i + 1; j < _npts; j++) {
1739 batchCovariance(i, j) = (*_covariogram)(_kdTree.getData(i), _kdTree.getData(j));
1740 batchCovariance(j, i) = batchCovariance(i, j);
1741 }
1742 }
1743 _timer.addToIteration();
1744
1745 ldlt.compute(batchCovariance);
1746
1747 fbar = 0.0;
1748 for (i = 0; i < _npts; i++) {
1749 fbar += _function[i][0];
1750 }
1751 fbar = fbar / T(_npts);
1752
1753 for (i = 0; i < _npts; i++) {
1754 batchbb(i, 0) = _function[i][0] - fbar;
1755 }
1756 batchxx = ldlt.solve(batchbb);
1757 _timer.addToEigen();
1758
1759 for (ndarray::Size ii = 0; ii < nQueries; ii++) {
1760 for (i = 0; i < _dimensions; i++) v1[i] = queries[ii][i];
1761 if (_useMaxMin == 1) {
1762 for (i = 0; i < _dimensions; i++) v1[i] = (v1[i] - _min[i]) / (_max[i] - _min[i]);
1763 }
1764
1765 mu(ii) = fbar;
1766 for (i = 0; i < _npts; i++) {
1767 mu(ii) += batchxx(i) * (*_covariogram)(v1, _kdTree.getData(i));
1768 }
1769 }
1770 _timer.addToIteration();
1771 _timer.addToTotal(nQueries);
1772}

◆ batchInterpolate() [3/4]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::batchInterpolate ( ndarray::Array< T, 2, 2 > mu,
ndarray::Array< T, 2, 2 > const & queries ) const

This is the version of batchInterpolate (without variances) that is called for a vector of functions.

Definition at line 1775 of file GaussianProcess.cc.

1776 {
1777 int i, j, ifn;
1778
1779 ndarray::Size nQueries = queries.template getSize<0>();
1780
1781 if (mu.template getSize<0>() != nQueries) {
1783 "Your output array does not have enough room for all of the points "
1784 "at which you want to interpolate your functions.\n");
1785 }
1786
1787 if (mu.template getSize<1>() != static_cast<ndarray::Size>(_nFunctions)) {
1789 "Your output array does not have enough room for all of the functions "
1790 "you are trying to interpolate.\n");
1791 }
1792
1793 if (queries.template getSize<1>() != static_cast<ndarray::Size>(_dimensions)) {
1795 "The points at which you are interpolating your functions do not "
1796 "have the correct dimensionality.\n");
1797 }
1798
1799 T fbar;
1800 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> batchCovariance, batchbb, batchxx;
1801 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> queryCovariance;
1802 Eigen::LDLT<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > ldlt;
1803
1804 ndarray::Array<T, 1, 1> v1;
1805
1806 _timer.start();
1807
1808 v1 = allocate(ndarray::makeVector(_dimensions));
1809
1810 batchbb.resize(_npts, 1);
1811 batchxx.resize(_npts, 1);
1812 batchCovariance.resize(_npts, _npts);
1813 queryCovariance.resize(_npts, 1);
1814
1815 for (i = 0; i < _npts; i++) {
1816 batchCovariance(i, i) = (*_covariogram)(_kdTree.getData(i), _kdTree.getData(i)) + _lambda;
1817 for (j = i + 1; j < _npts; j++) {
1818 batchCovariance(i, j) = (*_covariogram)(_kdTree.getData(i), _kdTree.getData(j));
1819 batchCovariance(j, i) = batchCovariance(i, j);
1820 }
1821 }
1822
1823 _timer.addToIteration();
1824
1825 ldlt.compute(batchCovariance);
1826
1827 _timer.addToEigen();
1828
1829 for (ifn = 0; ifn < _nFunctions; ifn++) {
1830 fbar = 0.0;
1831 for (i = 0; i < _npts; i++) {
1832 fbar += _function[i][ifn];
1833 }
1834 fbar = fbar / T(_npts);
1835
1836 _timer.addToIteration();
1837
1838 for (i = 0; i < _npts; i++) {
1839 batchbb(i, 0) = _function[i][ifn] - fbar;
1840 }
1841 batchxx = ldlt.solve(batchbb);
1842 _timer.addToEigen();
1843
1844 for (ndarray::Size ii = 0; ii < nQueries; ii++) {
1845 for (i = 0; i < _dimensions; i++) v1[i] = queries[ii][i];
1846 if (_useMaxMin == 1) {
1847 for (i = 0; i < _dimensions; i++) v1[i] = (v1[i] - _min[i]) / (_max[i] - _min[i]);
1848 }
1849
1850 mu[ii][ifn] = fbar;
1851 for (i = 0; i < _npts; i++) {
1852 mu[ii][ifn] += batchxx(i) * (*_covariogram)(v1, _kdTree.getData(i));
1853 }
1854 }
1855
1856 } // ifn = 0 through _nFunctions
1857
1858 _timer.addToTotal(nQueries);
1859}

◆ batchInterpolate() [4/4]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::batchInterpolate ( ndarray::Array< T, 2, 2 > mu,
ndarray::Array< T, 2, 2 > variance,
ndarray::Array< T, 2, 2 > const & queries ) const

This is the version of batchInterpolate (with variances) that is called for a vector of functions.

Definition at line 1588 of file GaussianProcess.cc.

1589 {
1590 int i, j, ifn;
1591
1592 ndarray::Size nQueries = queries.template getSize<0>();
1593
1594 if (mu.template getSize<0>() != nQueries || variance.template getSize<0>() != nQueries) {
1596 "Your output arrays do not have room for all of the points at which "
1597 "you are interpolating your functions.\n");
1598 }
1599
1600 if (mu.template getSize<1>() != static_cast<ndarray::Size>(_nFunctions) ||
1601 variance.template getSize<1>() != static_cast<ndarray::Size>(_nFunctions)) {
1603 "Your output arrays do not have room for all of the functions you are "
1604 "interpolating\n");
1605 }
1606
1607 if (queries.template getSize<1>() != static_cast<ndarray::Size>(_dimensions)) {
1609 "The points at which you are interpolating your functions have the "
1610 "wrong dimensionality.\n");
1611 }
1612
1613 T fbar;
1614 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> batchCovariance, batchbb, batchxx;
1615 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> queryCovariance;
1616 Eigen::LDLT<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > ldlt;
1617
1618 ndarray::Array<T, 1, 1> v1;
1619
1620 _timer.start();
1621
1622 v1 = allocate(ndarray::makeVector(_dimensions));
1623 batchbb.resize(_npts, 1);
1624 batchxx.resize(_npts, 1);
1625 batchCovariance.resize(_npts, _npts);
1626 queryCovariance.resize(_npts, 1);
1627
1628 for (i = 0; i < _npts; i++) {
1629 batchCovariance(i, i) = (*_covariogram)(_kdTree.getData(i), _kdTree.getData(i)) + _lambda;
1630 for (j = i + 1; j < _npts; j++) {
1631 batchCovariance(i, j) = (*_covariogram)(_kdTree.getData(i), _kdTree.getData(j));
1632 batchCovariance(j, i) = batchCovariance(i, j);
1633 }
1634 }
1635
1636 _timer.addToIteration();
1637
1638 ldlt.compute(batchCovariance);
1639
1640 _timer.addToEigen();
1641
1642 for (ifn = 0; ifn < _nFunctions; ifn++) {
1643 fbar = 0.0;
1644 for (i = 0; i < _npts; i++) {
1645 fbar += _function[i][ifn];
1646 }
1647 fbar = fbar / T(_npts);
1648 _timer.addToIteration();
1649
1650 for (i = 0; i < _npts; i++) {
1651 batchbb(i, 0) = _function[i][ifn] - fbar;
1652 }
1653 batchxx = ldlt.solve(batchbb);
1654 _timer.addToEigen();
1655
1656 for (ndarray::Size ii = 0; ii < nQueries; ii++) {
1657 for (i = 0; i < _dimensions; i++) v1[i] = queries[ii][i];
1658 if (_useMaxMin == 1) {
1659 for (i = 0; i < _dimensions; i++) v1[i] = (v1[i] - _min[i]) / (_max[i] - _min[i]);
1660 }
1661 mu[ii][ifn] = fbar;
1662 for (i = 0; i < _npts; i++) {
1663 mu[ii][ifn] += batchxx(i) * (*_covariogram)(v1, _kdTree.getData(i));
1664 }
1665 }
1666
1667 } // ifn = 0 to _nFunctions
1668
1669 _timer.addToIteration();
1670 for (ndarray::Size ii = 0; ii < nQueries; ii++) {
1671 for (i = 0; i < _dimensions; i++) v1[i] = queries[ii][i];
1672 if (_useMaxMin == 1) {
1673 for (i = 0; i < _dimensions; i++) v1[i] = (v1[i] - _min[i]) / (_max[i] - _min[i]);
1674 }
1675
1676 for (i = 0; i < _npts; i++) {
1677 batchbb(i, 0) = (*_covariogram)(v1, _kdTree.getData(i));
1678 queryCovariance(i, 0) = batchbb(i, 0);
1679 }
1680 batchxx = ldlt.solve(batchbb);
1681
1682 variance[ii][0] = (*_covariogram)(v1, v1) + _lambda;
1683
1684 for (i = 0; i < _npts; i++) {
1685 variance[ii][0] -= queryCovariance(i, 0) * batchxx(i);
1686 }
1687
1688 variance[ii][0] = variance[ii][0] * _krigingParameter;
1689 for (i = 1; i < _nFunctions; i++) variance[ii][i] = variance[ii][0];
1690 }
1691 _timer.addToVariance();
1692 _timer.addToTotal(nQueries);
1693}

◆ getData() [1/2]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::getData ( ndarray::Array< T, 2, 2 > pts,
ndarray::Array< T, 1, 1 > fn,
ndarray::Array< int, 1, 1 > indices ) const

Return a sub-sample the data underlying the Gaussian Process.

Parameters
[out]ptswill contain the data points from the Gaussian Process
[out]fnwill contain the function values from the Gaussian Process
[in]indicesis an array of indices indicating the points to return

Definition at line 929 of file GaussianProcess.cc.

930 {
931 if (_nFunctions != 1) {
933 "Your function value array does not have enough room for all of the functions "
934 "in your GaussianProcess.\n");
935 }
936
937 if (pts.template getSize<1>() != static_cast<ndarray::Size>(_dimensions)) {
939 "Your pts array is constructed for points of the wrong dimensionality.\n");
940 }
941
942 if (pts.template getSize<0>() != indices.getNumElements()) {
944 "You did not put enough room in your pts array to fit all the points "
945 "you asked for in your indices array.\n");
946 }
947
948 if (fn.template getSize<0>() != indices.getNumElements()) {
950 "You did not provide enough room in your function value array "
951 "for all of the points you requested in your indices array.\n");
952 }
953
954 for (ndarray::Size i = 0; i < indices.template getSize<0>(); i++) {
955 pts[i] = _kdTree.getData(indices[i]); // do this first in case one of the indices is invalid.
956 // _kdTree.getData() will raise an exception in that case
957 fn[i] = _function[indices[i]][0];
958 if (_useMaxMin == 1) {
959 for (int j = 0; j < _dimensions; j++) {
960 pts[i][j] *= (_max[j] - _min[j]);
961 pts[i][j] += _min[j];
962 }
963 }
964 }
965}

◆ getData() [2/2]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::getData ( ndarray::Array< T, 2, 2 > pts,
ndarray::Array< T, 2, 2 > fn,
ndarray::Array< int, 1, 1 > indices ) const

Return a sub-sample the data underlying the Gaussian Process.

Parameters
[out]ptswill contain the data points from the Gaussian Process
[out]fnwill contain the function values from the Gaussian Process
[in]indicesis an array of indices indicating the points to return

Definition at line 968 of file GaussianProcess.cc.

969 {
970 if (fn.template getSize<1>() != static_cast<ndarray::Size>(_nFunctions)) {
972 "Your function value array does not have enough room for all of the functions "
973 "in your GaussianProcess.\n");
974 }
975
976 if (pts.template getSize<1>() != static_cast<ndarray::Size>(_dimensions)) {
978 "Your pts array is constructed for points of the wrong dimensionality.\n");
979 }
980
981 if (pts.template getSize<0>() != indices.getNumElements()) {
983 "You did not put enough room in your pts array to fit all the points "
984 "you asked for in your indices array.\n");
985 }
986
987 if (fn.template getSize<0>() != indices.getNumElements()) {
989 "You did not provide enough room in your function value array "
990 "for all of the points you requested in your indices array.\n");
991 }
992
993 for (ndarray::Size i = 0; i < indices.template getSize<0>(); i++) {
994 pts[i] = _kdTree.getData(indices[i]); // do this first in case one of the indices is invalid.
995 // _kdTree.getData() will raise an exception in that case
996 for (int j = 0; j < _nFunctions; j++) {
997 fn[i][j] = _function[indices[i]][j];
998 }
999 if (_useMaxMin == 1) {
1000 for (int j = 0; j < _dimensions; j++) {
1001 pts[i][j] *= (_max[j] - _min[j]);
1002 pts[i][j] += _min[j];
1003 }
1004 }
1005 }
1006}

◆ getDim()

template<typename T >
int lsst::afw::math::GaussianProcess< T >::getDim ( ) const

return the dimensionality of data points stored in the GaussianProcess

Definition at line 924 of file GaussianProcess.cc.

924 {
925 return _dimensions;
926}

◆ getNPoints()

template<typename T >
int lsst::afw::math::GaussianProcess< T >::getNPoints ( ) const

return the number of data points stored in the GaussianProcess

Definition at line 919 of file GaussianProcess.cc.

919 {
920 return _npts;
921}

◆ getTimes()

template<typename T >
GaussianProcessTimer & lsst::afw::math::GaussianProcess< T >::getTimes ( ) const

Give the user acces to _timer, an object keeping track of the time spent on various processes within interpolate.

This will return a GaussianProcessTimer object. The user can, for example, see how much time has been spent on Eigen's linear algebra package (see the comments on the GaussianProcessTimer class) using code like

gg=GaussianProcess(....)

ticktock=gg.getTimes()

ticktock.display()

Definition at line 1981 of file GaussianProcess.cc.

1981 {
1982 return _timer;
1983}

◆ interpolate() [1/2]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::interpolate ( ndarray::Array< T, 1, 1 > mu,
ndarray::Array< T, 1, 1 > variance,
ndarray::Array< T, 1, 1 > const & vin,
int numberOfNeighbors ) const

This is the version of GaussianProcess::interpolate for a vector of functions.

Parameters
[out]muwill store the vector of interpolated function values
[out]variancewill store the vector of interpolated variances on mu
[in]vinthe point at which you wish to interpolate the functions
[in]numberOfNeighborsis the number of nearest neighbor points to use in the interpolation

Note: Because the variance currently only depends on the covariance function and the covariance function currently does not include any terms relating different elements of mu to each other, all of the elements of variance will be identical

Definition at line 1131 of file GaussianProcess.cc.

1132 {
1133 if (numberOfNeighbors <= 0) {
1135 "Asked for zero or negative number of neighbors\n");
1136 }
1137
1138 if (numberOfNeighbors > _kdTree.getNPoints()) {
1140 "Asked for more neighbors than you have data points\n");
1141 }
1142
1143 if (vin.getNumElements() != static_cast<ndarray::Size>(_dimensions)) {
1145 "You are interpolating at a point with different dimensionality than you data\n");
1146 }
1147
1148 if (mu.getNumElements() != static_cast<ndarray::Size>(_nFunctions) ||
1149 variance.getNumElements() != static_cast<ndarray::Size>(_nFunctions)) {
1151 "Your mu and/or var arrays are improperly sized for the number of functions "
1152 "you are interpolating\n");
1153 }
1154
1155 int i, j, ii;
1156 T fbar;
1157
1158 ndarray::Array<T, 1, 1> covarianceTestPoint;
1159 ndarray::Array<int, 1, 1> neighbors;
1160 ndarray::Array<double, 1, 1> neighborDistances, vv;
1161
1162 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> covariance, bb, xx;
1163 Eigen::LDLT<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > ldlt;
1164
1165 _timer.start();
1166
1167 bb.resize(numberOfNeighbors, 1);
1168 xx.resize(numberOfNeighbors, 1);
1169 covariance.resize(numberOfNeighbors, numberOfNeighbors);
1170 covarianceTestPoint = allocate(ndarray::makeVector(numberOfNeighbors));
1171 neighbors = allocate(ndarray::makeVector(numberOfNeighbors));
1172 neighborDistances = allocate(ndarray::makeVector(numberOfNeighbors));
1173
1174 vv = allocate(ndarray::makeVector(_dimensions));
1175
1176 if (_useMaxMin == 1) {
1177 // if you constructed this Gaussian process with minimum and maximum
1178 // values for the dimensions of your parameter space,
1179 // the point you are interpolating must be scaled to match the data so
1180 // that the selected nearest neighbors are appropriate
1181
1182 for (i = 0; i < _dimensions; i++) vv[i] = (vin[i] - _min[i]) / (_max[i] - _min[i]);
1183 } else {
1184 vv = vin;
1185 }
1186
1187 _kdTree.findNeighbors(neighbors, neighborDistances, vv, numberOfNeighbors);
1188
1189 _timer.addToSearch();
1190
1191 for (i = 0; i < numberOfNeighbors; i++) {
1192 covarianceTestPoint[i] = (*_covariogram)(vv, _kdTree.getData(neighbors[i]));
1193
1194 covariance(i, i) =
1195 (*_covariogram)(_kdTree.getData(neighbors[i]), _kdTree.getData(neighbors[i])) + _lambda;
1196
1197 for (j = i + 1; j < numberOfNeighbors; j++) {
1198 covariance(i, j) = (*_covariogram)(_kdTree.getData(neighbors[i]), _kdTree.getData(neighbors[j]));
1199 covariance(j, i) = covariance(i, j);
1200 }
1201 }
1202
1203 _timer.addToIteration();
1204
1205 // use Eigen's ldlt solver in place of matrix inversion (for speed purposes)
1206 ldlt.compute(covariance);
1207
1208 for (ii = 0; ii < _nFunctions; ii++) {
1209 fbar = 0.0;
1210 for (i = 0; i < numberOfNeighbors; i++) fbar += _function[neighbors[i]][ii];
1211 fbar = fbar / double(numberOfNeighbors);
1212
1213 for (i = 0; i < numberOfNeighbors; i++) bb(i, 0) = _function[neighbors[i]][ii] - fbar;
1214 xx = ldlt.solve(bb);
1215
1216 mu[ii] = fbar;
1217
1218 for (i = 0; i < numberOfNeighbors; i++) {
1219 mu[ii] += covarianceTestPoint[i] * xx(i, 0);
1220 }
1221
1222 } // ii = 0 through _nFunctions
1223
1224 _timer.addToEigen();
1225
1226 variance[0] = (*_covariogram)(vv, vv) + _lambda;
1227
1228 for (i = 0; i < numberOfNeighbors; i++) bb(i) = covarianceTestPoint[i];
1229
1230 xx = ldlt.solve(bb);
1231
1232 for (i = 0; i < numberOfNeighbors; i++) {
1233 variance[0] -= covarianceTestPoint[i] * xx(i, 0);
1234 }
1235 variance[0] = variance[0] * _krigingParameter;
1236
1237 for (i = 1; i < _nFunctions; i++) variance[i] = variance[0];
1238
1239 _timer.addToVariance();
1240 _timer.addToTotal(1);
1241}
void addToSearch()
Adds time to _searchTime.
MatrixQ covariance

◆ interpolate() [2/2]

template<typename T >
T lsst::afw::math::GaussianProcess< T >::interpolate ( ndarray::Array< T, 1, 1 > variance,
ndarray::Array< T, 1, 1 > const & vin,
int numberOfNeighbors ) const

Interpolate the function value at one point using a specified number of nearest neighbors.

Parameters
[out]variancea one-dimensional ndarray. The value of the variance predicted by the Gaussian process will be stored in the zeroth element
[in]vina one-dimensional ndarray representing the point at which you want to interpolate the function
[in]numberOfNeighborsthe number of nearest neighbors to be used in the interpolation

the interpolated value of the function will be returned at the end of this method

Note: if you used a normalized parameter space, you should not normalize vin before inputting. The code will remember that you want a normalized parameter space, and will apply the normalization when you call interpolate

Definition at line 1009 of file GaussianProcess.cc.

1010 {
1011 if (_nFunctions > 1) {
1013 "You need to call the version of GaussianProcess.interpolate() "
1014 "that accepts mu and variance arrays (which it populates with results). "
1015 "You are interpolating more than one function.");
1016 }
1017
1018 if (numberOfNeighbors <= 0) {
1020 "Asked for zero or negative number of neighbors\n");
1021 }
1022
1023 if (numberOfNeighbors > _kdTree.getNPoints()) {
1025 "Asked for more neighbors than you have data points\n");
1026 }
1027
1028 if (variance.getNumElements() != static_cast<ndarray::Size>(_nFunctions)) {
1030 "Your variance array is the incorrect size for the number "
1031 "of functions you are trying to interpolate\n");
1032 }
1033
1034 if (vin.getNumElements() != static_cast<ndarray::Size>(_dimensions)) {
1036 "You are interpolating at a point with different dimensionality than you data\n");
1037 }
1038
1039 int i, j;
1040 T fbar, mu;
1041
1042 ndarray::Array<T, 1, 1> covarianceTestPoint;
1043 ndarray::Array<int, 1, 1> neighbors;
1044 ndarray::Array<double, 1, 1> neighborDistances, vv;
1045
1046 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> covariance, bb, xx;
1047 Eigen::LDLT<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > ldlt;
1048
1049 _timer.start();
1050
1051 bb.resize(numberOfNeighbors, 1);
1052 xx.resize(numberOfNeighbors, 1);
1053
1054 covariance.resize(numberOfNeighbors, numberOfNeighbors);
1055
1056 covarianceTestPoint = allocate(ndarray::makeVector(numberOfNeighbors));
1057
1058 neighbors = allocate(ndarray::makeVector(numberOfNeighbors));
1059
1060 neighborDistances = allocate(ndarray::makeVector(numberOfNeighbors));
1061
1062 vv = allocate(ndarray::makeVector(_dimensions));
1063 if (_useMaxMin == 1) {
1064 // if you constructed this Gaussian process with minimum and maximum
1065 // values for the dimensions of your parameter space,
1066 // the point you are interpolating must be scaled to match the data so
1067 // that the selected nearest neighbors are appropriate
1068
1069 for (i = 0; i < _dimensions; i++) vv[i] = (vin[i] - _min[i]) / (_max[i] - _min[i]);
1070 } else {
1071 vv = vin;
1072 }
1073
1074 _kdTree.findNeighbors(neighbors, neighborDistances, vv, numberOfNeighbors);
1075
1076 _timer.addToSearch();
1077
1078 fbar = 0.0;
1079 for (i = 0; i < numberOfNeighbors; i++) fbar += _function[neighbors[i]][0];
1080 fbar = fbar / double(numberOfNeighbors);
1081
1082 for (i = 0; i < numberOfNeighbors; i++) {
1083 covarianceTestPoint[i] = (*_covariogram)(vv, _kdTree.getData(neighbors[i]));
1084
1085 covariance(i, i) =
1086 (*_covariogram)(_kdTree.getData(neighbors[i]), _kdTree.getData(neighbors[i])) + _lambda;
1087
1088 for (j = i + 1; j < numberOfNeighbors; j++) {
1089 covariance(i, j) = (*_covariogram)(_kdTree.getData(neighbors[i]), _kdTree.getData(neighbors[j]));
1090 covariance(j, i) = covariance(i, j);
1091 }
1092 }
1093
1094 _timer.addToIteration();
1095
1096 // use Eigen's ldlt solver in place of matrix inversion (for speed purposes)
1097 ldlt.compute(covariance);
1098
1099 for (i = 0; i < numberOfNeighbors; i++) bb(i, 0) = _function[neighbors[i]][0] - fbar;
1100
1101 xx = ldlt.solve(bb);
1102 _timer.addToEigen();
1103
1104 mu = fbar;
1105
1106 for (i = 0; i < numberOfNeighbors; i++) {
1107 mu += covarianceTestPoint[i] * xx(i, 0);
1108 }
1109
1110 _timer.addToIteration();
1111
1112 variance(0) = (*_covariogram)(vv, vv) + _lambda;
1113
1114 for (i = 0; i < numberOfNeighbors; i++) bb(i) = covarianceTestPoint[i];
1115
1116 xx = ldlt.solve(bb);
1117
1118 for (i = 0; i < numberOfNeighbors; i++) {
1119 variance(0) -= covarianceTestPoint[i] * xx(i, 0);
1120 }
1121
1122 variance(0) = variance(0) * _krigingParameter;
1123
1124 _timer.addToVariance();
1125 _timer.addToTotal(1);
1126
1127 return mu;
1128}

◆ operator=() [1/2]

template<typename T >
GaussianProcess & lsst::afw::math::GaussianProcess< T >::operator= ( const GaussianProcess< T > & )
delete

◆ operator=() [2/2]

template<typename T >
GaussianProcess & lsst::afw::math::GaussianProcess< T >::operator= ( GaussianProcess< T > && )
delete

◆ removePoint()

template<typename T >
void lsst::afw::math::GaussianProcess< T >::removePoint ( int dex)

This will remove a point from the data set.

Parameters
[in]dexthe index of the point you want to remove from your data set
Exceptions
pex::exceptions::RuntimeErrorif the tree does not end up properly constructed (the exception is actually thrown by KdTree<T>::removePoint() )

Note: excessive use of addPoint and removePoint can result in an unbalanced KdTree, which will slow down nearest neighbor searches

Definition at line 1952 of file GaussianProcess.cc.

1952 {
1953 int i, j;
1954
1955 _kdTree.removePoint(dex);
1956
1957 for (i = dex; i < _npts; i++) {
1958 for (j = 0; j < _nFunctions; j++) {
1959 _function[i][j] = _function[i + 1][j];
1960 }
1961 }
1962 _npts = _kdTree.getNPoints();
1963}

◆ selfInterpolate() [1/2]

template<typename T >
void lsst::afw::math::GaussianProcess< T >::selfInterpolate ( ndarray::Array< T, 1, 1 > mu,
ndarray::Array< T, 1, 1 > variance,
int dex,
int numberOfNeighbors ) const

The version of selfInterpolate called for a vector of functions.

Parameters
[out]muthis is where the interpolated function values will be stored
[out]variancethe variance on mu will be stored here
[in]dexthe index of the point you wish to interpolate
[in]numberOfNeighborsthe number of nearest neighbors to use in the interpolation
Exceptions
pex::exceptions::RuntimeErrorif the nearest neighbor search does not find the data point itself as the nearest neighbor

Definition at line 1367 of file GaussianProcess.cc.

1368 {
1369 if (mu.getNumElements() != static_cast<ndarray::Size>(_nFunctions) ||
1370 variance.getNumElements() != static_cast<ndarray::Size>(_nFunctions)) {
1372 "Your mu and/or var arrays are improperly sized for the number of functions "
1373 "you are interpolating\n");
1374 }
1375
1376 if (numberOfNeighbors <= 0) {
1378 "Asked for zero or negative number of neighbors\n");
1379 }
1380
1381 if (numberOfNeighbors + 1 > _kdTree.getNPoints()) {
1383 "Asked for more neighbors than you have data points\n");
1384 }
1385
1386 if (dex < 0 || dex >= _kdTree.getNPoints()) {
1388 "Asked to self interpolate on a point that does not exist\n");
1389 }
1390
1391 int i, j, ii;
1392 T fbar;
1393
1394 ndarray::Array<T, 1, 1> covarianceTestPoint;
1395 ndarray::Array<int, 1, 1> selfNeighbors;
1396 ndarray::Array<double, 1, 1> selfDistances;
1397 ndarray::Array<int, 1, 1> neighbors;
1398 ndarray::Array<double, 1, 1> neighborDistances;
1399
1400 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> covariance, bb, xx;
1401 Eigen::LDLT<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > ldlt;
1402
1403 _timer.start();
1404
1405 bb.resize(numberOfNeighbors, 1);
1406 xx.resize(numberOfNeighbors, 1);
1407 covariance.resize(numberOfNeighbors, numberOfNeighbors);
1408 covarianceTestPoint = allocate(ndarray::makeVector(numberOfNeighbors));
1409 neighbors = allocate(ndarray::makeVector(numberOfNeighbors));
1410 neighborDistances = allocate(ndarray::makeVector(numberOfNeighbors));
1411
1412 selfNeighbors = allocate(ndarray::makeVector(numberOfNeighbors + 1));
1413 selfDistances = allocate(ndarray::makeVector(numberOfNeighbors + 1));
1414
1415 // we don't use _useMaxMin because the data has already been normalized
1416
1417 _kdTree.findNeighbors(selfNeighbors, selfDistances, _kdTree.getData(dex), numberOfNeighbors + 1);
1418
1419 _timer.addToSearch();
1420
1421 if (selfNeighbors[0] != dex) {
1423 "Nearest neighbor search in selfInterpolate did not find self\n");
1424 }
1425
1426 // SelfNeighbors[0] will be the point itself (it is its own nearest neighbor)
1427 // We discard that for the interpolation calculation
1428 //
1429 // If you do not wish to do this, simply call the usual ::interpolate() method instead of
1430 //::selfInterpolate()
1431 for (i = 0; i < numberOfNeighbors; i++) {
1432 neighbors[i] = selfNeighbors[i + 1];
1433 neighborDistances[i] = selfDistances[i + 1];
1434 }
1435
1436 for (i = 0; i < numberOfNeighbors; i++) {
1437 covarianceTestPoint[i] = (*_covariogram)(_kdTree.getData(dex), _kdTree.getData(neighbors[i]));
1438
1439 covariance(i, i) =
1440 (*_covariogram)(_kdTree.getData(neighbors[i]), _kdTree.getData(neighbors[i])) + _lambda;
1441
1442 for (j = i + 1; j < numberOfNeighbors; j++) {
1443 covariance(i, j) = (*_covariogram)(_kdTree.getData(neighbors[i]), _kdTree.getData(neighbors[j]));
1444 covariance(j, i) = covariance(i, j);
1445 }
1446 }
1447 _timer.addToIteration();
1448
1449 // use Eigen's ldlt solver in place of matrix inversion (for speed purposes)
1450 ldlt.compute(covariance);
1451
1452 for (ii = 0; ii < _nFunctions; ii++) {
1453 fbar = 0.0;
1454 for (i = 0; i < numberOfNeighbors; i++) fbar += _function[neighbors[i]][ii];
1455 fbar = fbar / double(numberOfNeighbors);
1456
1457 for (i = 0; i < numberOfNeighbors; i++) bb(i, 0) = _function[neighbors[i]][ii] - fbar;
1458 xx = ldlt.solve(bb);
1459
1460 mu[ii] = fbar;
1461
1462 for (i = 0; i < numberOfNeighbors; i++) {
1463 mu[ii] += covarianceTestPoint[i] * xx(i, 0);
1464 }
1465 } // ii = 0 through _nFunctions
1466
1467 _timer.addToEigen();
1468
1469 variance[0] = (*_covariogram)(_kdTree.getData(dex), _kdTree.getData(dex)) + _lambda;
1470
1471 for (i = 0; i < numberOfNeighbors; i++) bb(i) = covarianceTestPoint[i];
1472
1473 xx = ldlt.solve(bb);
1474
1475 for (i = 0; i < numberOfNeighbors; i++) {
1476 variance[0] -= covarianceTestPoint[i] * xx(i, 0);
1477 }
1478
1479 variance[0] = variance[0] * _krigingParameter;
1480
1481 for (i = 1; i < _nFunctions; i++) variance[i] = variance[0];
1482
1483 _timer.addToVariance();
1484 _timer.addToTotal(1);
1485}

◆ selfInterpolate() [2/2]

template<typename T >
T lsst::afw::math::GaussianProcess< T >::selfInterpolate ( ndarray::Array< T, 1, 1 > variance,
int dex,
int numberOfNeighbors ) const

This method will interpolate the function on a data point for purposes of optimizing hyper parameters.

Parameters
[out]variancea one-dimensional ndarray. The value of the variance predicted by the Gaussian process will be stored in the zeroth element
[in]dexthe index of the point you wish to self interpolate
[in]numberOfNeighborsthe number of nearest neighbors to be used in the interpolation
Exceptions
pex::exceptions::RuntimeErrorif the nearest neighbor search does not find the data point itself as the nearest neighbor

The interpolated value of the function will be returned at the end of this method

This method ignores the point on which you are interpolating when requesting nearest neighbors

Definition at line 1244 of file GaussianProcess.cc.

1245 {
1246 if (_nFunctions > 1) {
1248 "You need to call the version of GaussianProcess.selfInterpolate() "
1249 "that accepts mu and variance arrays (which it populates with results). "
1250 "You are interpolating more than one function.");
1251 }
1252
1253 if (variance.getNumElements() != static_cast<ndarray::Size>(_nFunctions)) {
1255 "Your variance array is the incorrect size for the number "
1256 "of functions you are trying to interpolate\n");
1257 }
1258
1259 if (numberOfNeighbors <= 0) {
1261 "Asked for zero or negative number of neighbors\n");
1262 }
1263
1264 if (numberOfNeighbors + 1 > _kdTree.getNPoints()) {
1266 "Asked for more neighbors than you have data points\n");
1267 }
1268
1269 if (dex < 0 || dex >= _kdTree.getNPoints()) {
1271 "Asked to self interpolate on a point that does not exist\n");
1272 }
1273
1274 int i, j;
1275 T fbar, mu;
1276
1277 ndarray::Array<T, 1, 1> covarianceTestPoint;
1278 ndarray::Array<int, 1, 1> selfNeighbors;
1279 ndarray::Array<double, 1, 1> selfDistances;
1280 ndarray::Array<int, 1, 1> neighbors;
1281 ndarray::Array<double, 1, 1> neighborDistances;
1282
1283 Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> covariance, bb, xx;
1284 Eigen::LDLT<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> > ldlt;
1285
1286 _timer.start();
1287
1288 bb.resize(numberOfNeighbors, 1);
1289 xx.resize(numberOfNeighbors, 1);
1290 covariance.resize(numberOfNeighbors, numberOfNeighbors);
1291 covarianceTestPoint = allocate(ndarray::makeVector(numberOfNeighbors));
1292 neighbors = allocate(ndarray::makeVector(numberOfNeighbors));
1293 neighborDistances = allocate(ndarray::makeVector(numberOfNeighbors));
1294
1295 selfNeighbors = allocate(ndarray::makeVector(numberOfNeighbors + 1));
1296 selfDistances = allocate(ndarray::makeVector(numberOfNeighbors + 1));
1297
1298 // we don't use _useMaxMin because the data has already been normalized
1299
1300 _kdTree.findNeighbors(selfNeighbors, selfDistances, _kdTree.getData(dex), numberOfNeighbors + 1);
1301
1302 _timer.addToSearch();
1303
1304 if (selfNeighbors[0] != dex) {
1306 "Nearest neighbor search in selfInterpolate did not find self\n");
1307 }
1308
1309 // SelfNeighbors[0] will be the point itself (it is its own nearest neighbor)
1310 // We discard that for the interpolation calculation
1311 //
1312 // If you do not wish to do this, simply call the usual ::interpolate() method instead of
1313 //::selfInterpolate()
1314 for (i = 0; i < numberOfNeighbors; i++) {
1315 neighbors[i] = selfNeighbors[i + 1];
1316 neighborDistances[i] = selfDistances[i + 1];
1317 }
1318
1319 fbar = 0.0;
1320 for (i = 0; i < numberOfNeighbors; i++) fbar += _function[neighbors[i]][0];
1321 fbar = fbar / double(numberOfNeighbors);
1322
1323 for (i = 0; i < numberOfNeighbors; i++) {
1324 covarianceTestPoint[i] = (*_covariogram)(_kdTree.getData(dex), _kdTree.getData(neighbors[i]));
1325
1326 covariance(i, i) =
1327 (*_covariogram)(_kdTree.getData(neighbors[i]), _kdTree.getData(neighbors[i])) + _lambda;
1328
1329 for (j = i + 1; j < numberOfNeighbors; j++) {
1330 covariance(i, j) = (*_covariogram)(_kdTree.getData(neighbors[i]), _kdTree.getData(neighbors[j]));
1331 covariance(j, i) = covariance(i, j);
1332 }
1333 }
1334 _timer.addToIteration();
1335
1336 // use Eigen's ldlt solver in place of matrix inversion (for speed purposes)
1337 ldlt.compute(covariance);
1338
1339 for (i = 0; i < numberOfNeighbors; i++) bb(i, 0) = _function[neighbors[i]][0] - fbar;
1340 xx = ldlt.solve(bb);
1341 _timer.addToEigen();
1342
1343 mu = fbar;
1344
1345 for (i = 0; i < numberOfNeighbors; i++) {
1346 mu += covarianceTestPoint[i] * xx(i, 0);
1347 }
1348
1349 variance(0) = (*_covariogram)(_kdTree.getData(dex), _kdTree.getData(dex)) + _lambda;
1350
1351 for (i = 0; i < numberOfNeighbors; i++) bb(i) = covarianceTestPoint[i];
1352
1353 xx = ldlt.solve(bb);
1354
1355 for (i = 0; i < numberOfNeighbors; i++) {
1356 variance(0) -= covarianceTestPoint[i] * xx(i, 0);
1357 }
1358
1359 variance(0) = variance(0) * _krigingParameter;
1360 _timer.addToVariance();
1361 _timer.addToTotal(1);
1362
1363 return mu;
1364}

◆ setCovariogram()

template<typename T >
void lsst::afw::math::GaussianProcess< T >::setCovariogram ( std::shared_ptr< Covariogram< T > > const & covar)

Assign a different covariogram to this GaussianProcess.

Parameters
[in]covarthe Covariogram object that you wish to assign

Definition at line 1971 of file GaussianProcess.cc.

1971 {
1972 _covariogram = covar;
1973}

◆ setKrigingParameter()

template<typename T >
void lsst::afw::math::GaussianProcess< T >::setKrigingParameter ( T kk)

Assign a value to the Kriging paramter.

Parameters
[in]kkthe value assigned to the Kriging parameters

Definition at line 1966 of file GaussianProcess.cc.

1966 {
1967 _krigingParameter = kk;
1968}

◆ setLambda()

template<typename T >
void lsst::afw::math::GaussianProcess< T >::setLambda ( T lambda)

set the value of the hyperparameter _lambda

Parameters
[in]lambdathe value you want assigned to _lambda

_lambda is a parameter meant to represent the characteristic variance of the function you are interpolating. Currently, it is a scalar such that all data points must have the same characteristic variance. Future iterations of the code may want to promote _lambda to an array so that different data points can have different variances.

Definition at line 1976 of file GaussianProcess.cc.

1976 {
1977 _lambda = lambda;
1978}

The documentation for this class was generated from the following files: