LSST Applications g063fba187b+eddd1b24d7,g0f08755f38+4a855ab515,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+062a45aee3,g1dcb35cd9c+45d3fa5522,g20f6ffc8e0+4a855ab515,g217e2c1bcf+f55e51b560,g28da252d5a+7d8e536cc7,g2bbee38e9b+2d92fc7d83,g2bc492864f+2d92fc7d83,g3156d2b45e+6e55a43351,g32e5bea42b+625186cc6b,g347aa1857d+2d92fc7d83,g35bb328faa+a8ce1bb630,g3a166c0a6a+2d92fc7d83,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+1af189bab1,g7af13505b9+7b6a50a2f8,g80478fca09+6174b7f182,g82479be7b0+5b71efbaf0,g858d7b2824+4a855ab515,g9125e01d80+a8ce1bb630,ga5288a1d22+61618a97c4,gb58c049af0+d64f4d3760,gc28159a63d+2d92fc7d83,gc5452a3dca+f4add4ffd5,gcab2d0539d+d9f5af7f69,gcf0d15dbbd+6c7e0a19ec,gda6a2b7d83+6c7e0a19ec,gdaeeff99f8+1711a396fd,ge79ae78c31+2d92fc7d83,gef2f8181fd+55fff6f525,gf0baf85859+c1f95f4921,gfa517265be+4a855ab515,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
Public Member Functions | List of all members
lsst::afw::math::KdTree< T > Class Template Reference

The data for GaussianProcess is stored in a KD tree to facilitate nearest-neighbor searches. More...

#include <GaussianProcess.h>

Public Member Functions

 KdTree (const KdTree &)=delete
 
KdTreeoperator= (const KdTree &)=delete
 
 KdTree (KdTree &&)=delete
 
KdTreeoperator= (KdTree &&)=delete
 
 KdTree ()=default
 
void Initialize (ndarray::Array< T, 2, 2 > const &dt)
 Build a KD Tree to store the data for GaussianProcess.
 
void findNeighbors (ndarray::Array< int, 1, 1 > neighdex, ndarray::Array< double, 1, 1 > dd, ndarray::Array< const T, 1, 1 > const &v, int n_nn) const
 Find the nearest neighbors of a point.
 
getData (int ipt, int idim) const
 Return one element of one node on the tree.
 
ndarray::Array< T, 1, 1 > getData (int ipt) const
 Return an entire node from the tree.
 
void addPoint (ndarray::Array< const T, 1, 1 > const &v)
 Add a point to the tree.
 
void removePoint (int dex)
 Remove a point from the tree.
 
int getNPoints () const
 return the number of data points stored in the tree
 
void getTreeNode (ndarray::Array< int, 1, 1 > const &v, int dex) const
 Return the _tree information for a given data point.
 

Detailed Description

template<typename T>
class lsst::afw::math::KdTree< T >

The data for GaussianProcess is stored in a KD tree to facilitate nearest-neighbor searches.

Note: I have removed the ability to arbitrarily specify a distance function. The KD Tree nearest neighbor search algorithm only makes sense in the case of Euclidean distances, so I have forced KdTree to use Euclidean distances.

Definition at line 224 of file GaussianProcess.h.

Constructor & Destructor Documentation

◆ KdTree() [1/3]

template<typename T >
lsst::afw::math::KdTree< T >::KdTree ( const KdTree< T > & )
delete

◆ KdTree() [2/3]

template<typename T >
lsst::afw::math::KdTree< T >::KdTree ( KdTree< T > && )
delete

◆ KdTree() [3/3]

template<typename T >
lsst::afw::math::KdTree< T >::KdTree ( )
default

Member Function Documentation

◆ addPoint()

template<typename T >
void lsst::afw::math::KdTree< T >::addPoint ( ndarray::Array< const T, 1, 1 > const & v)

Add a point to the tree.

Allot more space in _tree and data if needed.

Parameters
[in]vthe point you are adding to the tree
Exceptions
pex::exceptions::RuntimeErrorif the branch ending in the new point is not properly constructed

Definition at line 210 of file GaussianProcess.cc.

210 {
211 if (v.getNumElements() != static_cast<ndarray::Size>(_dimensions)) {
213 "You are trying to add a point of the incorrect dimensionality to KdTree\n");
214 }
215
216 int i, j, node, dim, dir;
217
218 node = _findNode(v);
219 dim = _tree[node][DIMENSION] + 1;
220 if (dim == _dimensions) dim = 0;
221
222 if (_npts == _room) {
223 ndarray::Array<T, 2, 2> dbuff = allocate(ndarray::makeVector(_npts, _dimensions));
224 ndarray::Array<int, 2, 2> tbuff = allocate(ndarray::makeVector(_npts, 4));
225
226 dbuff.deep() = _data;
227 tbuff.deep() = _tree;
228
229 _room += _roomStep;
230
231 _tree = allocate(ndarray::makeVector(_room, 4));
232 _data = allocate(ndarray::makeVector(_room, _dimensions));
233
234 for (i = 0; i < _npts; i++) {
235 for (j = 0; j < _dimensions; j++) _data[i][j] = dbuff[i][j];
236 for (j = 0; j < 4; j++) _tree[i][j] = tbuff[i][j];
237 }
238 }
239
240 _tree[_npts][DIMENSION] = dim;
241 _tree[_npts][PARENT] = node;
242 i = _tree[node][DIMENSION];
243
244 if (_data[node][i] > v[i]) {
245 if (_tree[node][LT] >= 0) {
247 "Trying to add to KdTree in a node that is already occupied\n");
248 }
249 _tree[node][LT] = _npts;
250 dir = LT;
251 } else {
252 if (_tree[node][GEQ] >= 0) {
254 "Trying to add to KdTree in a node that is already occupied\n");
255 }
256 _tree[node][GEQ] = _npts;
257 dir = GEQ;
258 }
259 _tree[_npts][LT] = -1;
260 _tree[_npts][GEQ] = -1;
261 for (i = 0; i < _dimensions; i++) {
262 _data[_npts][i] = v[i];
263 }
264
265 _npts++;
266
267 i = _walkUpTree(_tree[_npts - 1][PARENT], dir, _npts - 1);
268 if (i != _masterParent) {
269 throw LSST_EXCEPT(lsst::pex::exceptions::RuntimeError, "Adding to KdTree failed\n");
270 }
271}
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition Exception.h:48
Reports errors that are due to events beyond the control of the program.
Definition Runtime.h:104

◆ findNeighbors()

template<typename T >
void lsst::afw::math::KdTree< T >::findNeighbors ( ndarray::Array< int, 1, 1 > neighdex,
ndarray::Array< double, 1, 1 > dd,
ndarray::Array< const T, 1, 1 > const & v,
int n_nn ) const

Find the nearest neighbors of a point.

Parameters
[out]neighdexthis is where the indices of the nearest neighbor points will be stored
[out]ddthis is where the distances to the nearest neighbors will be stored
[in]vthe point whose neighbors you want to find
[in]n_nnthe number of nearest neighbors you want to find

neighbors will be returned in ascending order of distance

note that distance is forced to be the Euclidean distance

Definition at line 135 of file GaussianProcess.cc.

136 {
137 if (n_nn > _npts) {
139 "Asked for more neighbors than kd tree contains\n");
140 }
141
142 if (n_nn <= 0) {
144 "Asked for zero or a negative number of neighbors\n");
145 }
146
147 if (neighdex.getNumElements() != static_cast<ndarray::Size>(n_nn)) {
149 "Size of neighdex does not equal n_nn in KdTree.findNeighbors\n");
150 }
151
152 if (dd.getNumElements() != static_cast<ndarray::Size>(n_nn)) {
154 "Size of dd does not equal n_nn in KdTree.findNeighbors\n");
155 }
156
157 int i, start;
158
159 _neighborCandidates = allocate(ndarray::makeVector(n_nn));
160 _neighborDistances = allocate(ndarray::makeVector(n_nn));
161 _neighborsFound = 0;
162 _neighborsWanted = n_nn;
163
164 for (i = 0; i < n_nn; i++) _neighborDistances[i] = -1.0;
165
166 start = _findNode(v);
167
168 _neighborDistances[0] = _distance(v, _data[start]);
169 _neighborCandidates[0] = start;
170 _neighborsFound = 1;
171
172 for (i = 1; i < 4; i++) {
173 if (_tree[start][i] >= 0) {
174 _lookForNeighbors(v, _tree[start][i], start);
175 }
176 }
177
178 for (i = 0; i < n_nn; i++) {
179 neighdex[i] = _neighborCandidates[i];
180 dd[i] = _neighborDistances[i];
181 }
182}

◆ getData() [1/2]

template<typename T >
ndarray::Array< T, 1, 1 > lsst::afw::math::KdTree< T >::getData ( int ipt) const

Return an entire node from the tree.

Parameters
[in]iptthe index of the node to return

I currently have this as a return-by-value method. When I tried it as a return-by-reference, the compiler gave me

warning: returning reference to local temporary object

Based on my reading of Stack Overflow, this is because ndarray was implicitly creating a new ndarray::Array<T,1,1> object and passing a reference thereto. It is unclear to me whether or not this object would be destroyed once the call to getData was complete.

The code still compiled, ran, and passed the unit tests, but the above behavior seemed to me like it could be dangerous (and, because ndarray was still creating a new object, it did not seem like we were saving any time), so I reverted to return-by-value.

Definition at line 200 of file GaussianProcess.cc.

200 {
201 if (ipt >= _npts || ipt < 0) {
203 "Asked for point that does not exist in KdTree\n");
204 }
205
206 return _data[ipt];
207}

◆ getData() [2/2]

template<typename T >
T lsst::afw::math::KdTree< T >::getData ( int ipt,
int idim ) const

Return one element of one node on the tree.

Parameters
[in]iptthe index of the node to return
[in]idimthe index of the dimension to return

Definition at line 185 of file GaussianProcess.cc.

185 {
186 if (ipt >= _npts || ipt < 0) {
188 "Asked for point that does not exist in KdTree\n");
189 }
190
191 if (idim >= _dimensions || idim < 0) {
193 "KdTree does not have points of that many dimensions\n");
194 }
195
196 return _data[ipt][idim];
197}

◆ getNPoints()

template<typename T >
int lsst::afw::math::KdTree< T >::getNPoints ( ) const

return the number of data points stored in the tree

Definition at line 274 of file GaussianProcess.cc.

274 {
275 return _npts;
276}

◆ getTreeNode()

template<typename T >
void lsst::afw::math::KdTree< T >::getTreeNode ( ndarray::Array< int, 1, 1 > const & v,
int dex ) const

Return the _tree information for a given data point.

Parameters
[out]vthe array in which to store the entry from _tree
[in]dexthe index of the node whose information you are requesting

Definition at line 279 of file GaussianProcess.cc.

279 {
280 if (dex < 0 || dex >= _npts) {
282 "Asked for tree information on point that does not exist\n");
283 }
284
285 if (v.getNumElements() != 4) {
287 "Need to pass a 4-element ndarray into KdTree.getTreeNode()\n");
288 }
289
290 v[0] = _tree[dex][DIMENSION];
291 v[1] = _tree[dex][LT];
292 v[2] = _tree[dex][GEQ];
293 v[3] = _tree[dex][PARENT];
294}

◆ Initialize()

template<typename T >
void lsst::afw::math::KdTree< T >::Initialize ( ndarray::Array< T, 2, 2 > const & dt)

Build a KD Tree to store the data for GaussianProcess.

Parameters
[in]dtan array, the rows of which are the data points (dt[i][j] is the jth component of the ith data point)
Exceptions
pex::exceptions::RuntimeErrorif the tree is not properly constructed

Definition at line 104 of file GaussianProcess.cc.

104 {
105 int i;
106
107 _npts = dt.template getSize<0>();
108 _dimensions = dt.template getSize<1>();
109
110 // a buffer to use when first building the tree
111 _inn = allocate(ndarray::makeVector(_npts));
112
113 _roomStep = 5000;
114 _room = _npts;
115
116 _data = allocate(ndarray::makeVector(_room, _dimensions));
117
118 _data.deep() = dt;
119
120 _tree = allocate(ndarray::makeVector(_room, 4));
121
122 for (i = 0; i < _npts; i++) {
123 _inn[i] = i;
124 }
125
126 _organize(_inn, _npts, -1, -1);
127
128 i = _testTree();
129 if (i == 0) {
130 throw LSST_EXCEPT(lsst::pex::exceptions::RuntimeError, "Failed to properly initialize KdTree\n");
131 }
132}

◆ operator=() [1/2]

template<typename T >
KdTree & lsst::afw::math::KdTree< T >::operator= ( const KdTree< T > & )
delete

◆ operator=() [2/2]

template<typename T >
KdTree & lsst::afw::math::KdTree< T >::operator= ( KdTree< T > && )
delete

◆ removePoint()

template<typename T >
void lsst::afw::math::KdTree< T >::removePoint ( int dex)

Remove a point from the tree.

Reorganize what remains so that the tree remains self-consistent

Parameters
[in]dexthe index of the point you want to remove from the tree
Exceptions
pex::exceptions::RuntimeErrorif the entire tree is not poperly constructed after the point has been removed

Definition at line 582 of file GaussianProcess.cc.

582 {
583 if (target < 0 || target >= _npts) {
585 "You are trying to remove a point that doesn't exist from KdTree\n");
586 }
587
588 if (_npts == 1) {
590 "There is only one point left in this KdTree. You cannot call removePoint\n");
591 }
592
593 int nl, nr, i, j, k, side;
594 int root;
595
596 nl = 0;
597 nr = 0;
598 if (_tree[target][LT] >= 0) {
599 nl++;
600 _count(_tree[target][LT], &nl);
601 }
602
603 if (_tree[target][GEQ] >= 0) {
604 nr++;
605 _count(_tree[target][GEQ], &nr);
606 }
607
608 if (nl == 0 && nr == 0) {
609 k = _tree[target][PARENT];
610
611 if (_tree[k][LT] == target)
612 _tree[k][LT] = -1;
613 else if (_tree[k][GEQ] == target)
614 _tree[k][GEQ] = -1;
615
616 } // if target is terminal
617 else if ((nl == 0 && nr > 0) || (nr == 0 && nl > 0)) {
618 if (nl == 0)
619 side = GEQ;
620 else
621 side = LT;
622
623 k = _tree[target][PARENT];
624 if (k >= 0) {
625 if (_tree[k][LT] == target) {
626 _tree[k][LT] = _tree[target][side];
627 _tree[_tree[k][LT]][PARENT] = k;
628
629 } else {
630 _tree[k][GEQ] = _tree[target][side];
631 _tree[_tree[k][GEQ]][PARENT] = k;
632 }
633 } else {
634 _masterParent = _tree[target][side];
635 _tree[_tree[target][side]][PARENT] = -1;
636 }
637 } // if only one side is populated
638 else {
639 if (nl > nr)
640 side = LT;
641 else
642 side = GEQ;
643
644 k = _tree[target][PARENT];
645 if (k < 0) {
646 _masterParent = _tree[target][side];
647 _tree[_masterParent][PARENT] = -1;
648 } else {
649 if (_tree[k][LT] == target) {
650 _tree[k][LT] = _tree[target][side];
651 _tree[_tree[k][LT]][PARENT] = k;
652 } else {
653 _tree[k][GEQ] = _tree[target][side];
654 _tree[_tree[k][GEQ]][PARENT] = k;
655 }
656 }
657
658 root = _tree[target][3 - side];
659
660 _descend(root);
661 } // if both sides are populated
662
663 if (target < _npts - 1) {
664 for (i = target + 1; i < _npts; i++) {
665 for (j = 0; j < 4; j++) _tree[i - 1][j] = _tree[i][j];
666
667 for (j = 0; j < _dimensions; j++) _data[i - 1][j] = _data[i][j];
668 }
669
670 for (i = 0; i < _npts; i++) {
671 for (j = 1; j < 4; j++) {
672 if (_tree[i][j] > target) _tree[i][j]--;
673 }
674 }
675
676 if (_masterParent > target) _masterParent--;
677 }
678 _npts--;
679
680 i = _testTree();
681 if (i == 0) {
682 throw LSST_EXCEPT(lsst::pex::exceptions::RuntimeError, "Subtracting from KdTree failed\n");
683 }
684}
Key< Flag > const & target

The documentation for this class was generated from the following files: