LSST Applications g0f08755f38+82efc23009,g12f32b3c4e+e7bdf1200e,g1653933729+a8ce1bb630,g1a0ca8cf93+50eff2b06f,g28da252d5a+52db39f6a5,g2bbee38e9b+37c5a29d61,g2bc492864f+37c5a29d61,g2cdde0e794+c05ff076ad,g3156d2b45e+41e33cbcdc,g347aa1857d+37c5a29d61,g35bb328faa+a8ce1bb630,g3a166c0a6a+37c5a29d61,g3e281a1b8c+fb992f5633,g414038480c+7f03dfc1b0,g41af890bb2+11b950c980,g5fbc88fb19+17cd334064,g6b1c1869cb+12dd639c9a,g781aacb6e4+a8ce1bb630,g80478fca09+72e9651da0,g82479be7b0+04c31367b4,g858d7b2824+82efc23009,g9125e01d80+a8ce1bb630,g9726552aa6+8047e3811d,ga5288a1d22+e532dc0a0b,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+37c5a29d61,gcf0d15dbbd+2acd6d4d48,gd7358e8bfb+778a810b6e,gda3e153d99+82efc23009,gda6a2b7d83+2acd6d4d48,gdaeeff99f8+1711a396fd,ge2409df99d+6b12de1076,ge79ae78c31+37c5a29d61,gf0baf85859+d0a5978c5a,gf3967379c6+4954f8c433,gfb92a5be7c+82efc23009,gfec2e1e490+2aaed99252,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
computeExPsf.py
Go to the documentation of this file.
1# This file is part of meas_algorithms.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22
23from lsst.meas.algorithms.treecorrUtils import TreecorrConfig
24from lsst.pex.config import Config, ConfigField
25from lsst.pipe.base import Task
26import lsst.pipe.base as pipeBase
27import treecorr
28import copy
29import numpy.typing as npt
30
31
32__all__ = ("ComputeExPsfTask", "ComputeExPsfConfig")
33
34
36 """Config class of ComputeExPsfTask."""
37
38 treecorr = ConfigField(
39 dtype=TreecorrConfig,
40 doc="treecorr config.",
41 )
42
43 def setDefaults(self):
44 super().setDefaults()
45
46 self.treecorr.min_sep = 1.0 / 60.0
47 self.treecorr.max_sep = 5.0 / 60.0
48 self.treecorr.nbins = 1
49 self.treecorr.bin_type = "Linear"
50 self.treecorr.sep_units = "degree"
51
52
53class ComputeExPsfTask(Task):
54 """Compute Ex for PSF.
55
56 Compute scalar correlation function from
57 PSF ellipticity residuals to compute TEx
58 metrics.
59
60 Parameters
61 ----------
62 de1: `np.ndarray`
63 PSF ellipticity residuals component 1.
64 de2: `np.ndarray`
65 PSF ellipticity residuals component 2.
66 ra: `np.ndarray`
67 Right ascension coordinate.
68 dec: `np.ndarray`
69 Declination coordinate.
70 units: `str`
71 In which units are ra and dec. units supported
72 are the same as the one in treecorr.
73
74 Returns
75 -------
76 struct : `lsst.pipe.base.Struct`
77 The struct contains the following data:
78 ``E1``: `float`
79 <de1 de1> scalar correlation function, compute
80 in an angular bin define in TreecorrConfig.
81 ``E2``: `float`
82 <de2 de2> scalar correlation function, compute
83 in an angular bin define in TreecorrConfig.
84 ``Ex``: `float`
85 <de1 de2> scalar cross-correlation function, compute
86 in an angular bin define in TreecorrConfig.
87 """
88
89 ConfigClass = ComputeExPsfConfig
90 _DefaultName = "computeExPsf"
91
92 def run(
93 self,
94 de1: npt.NDArray,
95 de2: npt.NDArray,
96 ra: npt.NDArray,
97 dec: npt.NDArray,
98 units: str = "arcmin",
99 ) -> pipeBase.Struct:
100
101 if units != self.config.treecorr.sep_units:
102 raise ValueError(
103 "units from ComputeExPsfConfig and"
104 "ComputeExPsfTask are not the same (%s != %s)"
105 % ((units, self.config.treecorr.sep_units))
106 )
107
108 kwargs_cat = {
109 "ra": ra,
110 "dec": dec,
111 "ra_units": units,
112 "dec_units": units,
113 }
114
115 cat1 = treecorr.Catalog(k=de1, **kwargs_cat)
116 cat2 = treecorr.Catalog(k=de2, **kwargs_cat)
117
118 config_kk = self.config.treecorr.toDict()
119
120 kk = treecorr.KKCorrelation(config_kk)
121
122 kk.process(cat1)
123 kk_E1 = copy.deepcopy(kk.xi[0])
124 kk.process(cat2)
125 kk_E2 = copy.deepcopy(kk.xi[0])
126 kk.process(cat1, cat2)
127 kk_Ex = copy.deepcopy(kk.xi[0])
128
129 return pipeBase.Struct(metric_E1=kk_E1, metric_E2=kk_E2, metric_Ex=kk_Ex)
pipeBase.Struct run(self, npt.NDArray de1, npt.NDArray de2, npt.NDArray ra, npt.NDArray dec, str units="arcmin")