LSST Applications g00274db5b6+edbf708997,g00d0e8bbd7+edbf708997,g199a45376c+5137f08352,g1fd858c14a+1d4b6db739,g262e1987ae+f4d9505c4f,g29ae962dfc+7156fb1a53,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3e17d7035e+5b3adc59f5,g3fd5ace14f+852fa6fbcb,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+9f17e571f4,g67b6fd64d1+6dc8069a4c,g74acd417e5+ae494d68d9,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+536efcc10a,g7cc15d900a+d121454f8d,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d7436a09f+28c28d8d6d,g8ea07a8fe4+db21c37724,g92c671f44c+9f17e571f4,g98df359435+b2e6376b13,g99af87f6a8+b0f4ad7b8d,gac66b60396+966efe6077,gb88ae4c679+7dec8f19df,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gc24b5d6ed1+9f17e571f4,gca7fc764a6+6dc8069a4c,gcc769fe2a4+97d0256649,gd7ef33dd92+6dc8069a4c,gdab6d2f7ff+ae494d68d9,gdbb4c4dda9+9f17e571f4,ge410e46f29+6dc8069a4c,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
computeExPsf.py
Go to the documentation of this file.
1# This file is part of meas_algorithms.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22
23from lsst.meas.algorithms.treecorrUtils import TreecorrConfig
24from lsst.pex.config import Config, ConfigField
25from lsst.pipe.base import Task
26import lsst.pipe.base as pipeBase
27import treecorr
28import copy
29import numpy.typing as npt
30
31
32__all__ = ("ComputeExPsfTask", "ComputeExPsfConfig")
33
34
36 """Config class of ComputeExPsfTask."""
37
38 treecorr = ConfigField(
39 dtype=TreecorrConfig,
40 doc="treecorr config.",
41 )
42
43 def setDefaults(self):
44 super().setDefaults()
45
46 self.treecorr.min_sep = 1.0 / 60.0
47 self.treecorr.max_sep = 5.0 / 60.0
48 self.treecorr.nbins = 1
49 self.treecorr.bin_type = "Linear"
50 self.treecorr.sep_units = "degree"
51
52
53class ComputeExPsfTask(Task):
54 """Compute Ex for PSF.
55
56 Compute scalar correlation function from
57 PSF ellipticity residuals to compute TEx
58 metrics.
59
60 Parameters
61 ----------
62 de1: `np.ndarray`
63 PSF ellipticity residuals component 1.
64 de2: `np.ndarray`
65 PSF ellipticity residuals component 2.
66 ra: `np.ndarray`
67 Right ascension coordinate.
68 dec: `np.ndarray`
69 Declination coordinate.
70 units: `str`
71 In which units are ra and dec. units supported
72 are the same as the one in treecorr.
73
74 Returns
75 -------
76 struct : `lsst.pipe.base.Struct`
77 The struct contains the following data:
78 ``E1``: `float`
79 <de1 de1> scalar correlation function, compute
80 in an angular bin define in TreecorrConfig.
81 ``E2``: `float`
82 <de2 de2> scalar correlation function, compute
83 in an angular bin define in TreecorrConfig.
84 ``Ex``: `float`
85 <de1 de2> scalar cross-correlation function, compute
86 in an angular bin define in TreecorrConfig.
87 """
88
89 ConfigClass = ComputeExPsfConfig
90 _DefaultName = "computeExPsf"
91
92 def run(
93 self,
94 de1: npt.NDArray,
95 de2: npt.NDArray,
96 ra: npt.NDArray,
97 dec: npt.NDArray,
98 units: str = "arcmin",
99 ) -> pipeBase.Struct:
100
101 if units != self.config.treecorr.sep_units:
102 raise ValueError(
103 "units from ComputeExPsfConfig and"
104 "ComputeExPsfTask are not the same (%s != %s)"
105 % ((units, self.config.treecorr.sep_units))
106 )
107
108 kwargs_cat = {
109 "ra": ra,
110 "dec": dec,
111 "ra_units": units,
112 "dec_units": units,
113 }
114
115 cat1 = treecorr.Catalog(k=de1, **kwargs_cat)
116 cat2 = treecorr.Catalog(k=de2, **kwargs_cat)
117
118 config_kk = self.config.treecorr.toDict()
119
120 kk = treecorr.KKCorrelation(config_kk)
121
122 kk.process(cat1)
123 kk_E1 = copy.deepcopy(kk.xi[0])
124 kk.process(cat2)
125 kk_E2 = copy.deepcopy(kk.xi[0])
126 kk.process(cat1, cat2)
127 kk_Ex = copy.deepcopy(kk.xi[0])
128
129 return pipeBase.Struct(metric_E1=kk_E1, metric_E2=kk_E2, metric_Ex=kk_Ex)
pipeBase.Struct run(self, npt.NDArray de1, npt.NDArray de2, npt.NDArray ra, npt.NDArray dec, str units="arcmin")