22__all__ = (
'DeferredChargeConfig',
29 'FloatingOutputAmplifier',
30 'DeferredChargeCalib',
36from astropy.table
import Table
41from .isrFunctions
import gainContext
42from .calibType
import IsrCalib
44import scipy.interpolate
as interp
48 """Represents a serial register trap.
53 Size of the charge trap, in electrons.
54 emission_time : `float`
55 Trap emission time constant, in inverse transfers.
57 Serial pixel location of the trap, including the prescan.
59 Type of trap capture to use. Should be one of ``linear``,
60 ``logistic``, or ``spline``.
61 coeffs : `list` [`float`]
62 Coefficients for the capture process. Linear traps need one
63 coefficient, logistic traps need two, and spline based traps
64 need to have an even number of coefficients that can be split
65 into their spline locations and values.
70 Raised if the specified parameters are out of expected range.
73 def __init__(self, size, emission_time, pixel, trap_type, coeffs):
75 raise ValueError(
'Trap size must be greater than or equal to 0.')
78 if emission_time <= 0.0:
79 raise ValueError(
'Emission time must be greater than 0.')
80 if np.isnan(emission_time):
81 raise ValueError(
'Emission time must be real-valued, not NaN')
84 if int(pixel) != pixel:
85 raise ValueError(
'Fraction value for pixel not allowed.')
91 if self.
trap_type not in (
'linear',
'logistic',
'spline'):
92 raise ValueError(
'Unknown trap type: %s', self.
trap_type)
97 centers, values = np.split(np.array(self.
coeffs, dtype=np.float64), 2)
99 values = values[~np.isnan(centers)]
100 centers = centers[~np.isnan(centers)]
101 centers = centers[~np.isnan(values)]
102 values = values[~np.isnan(values)]
107 fill_value=(values[0], values[-1]),
117 if self.
size != other.size:
121 if self.
pixel != other.pixel:
125 if self.
coeffs != other.coeffs:
138 """Initialize trapping arrays for simulated readout.
143 Number of rows to simulate.
145 Number of columns to simulate.
146 prescan_width : `int`
147 Additional transfers due to prescan.
152 Raised if the trap falls outside of the image.
154 if self.
pixel > nx+prescan_width:
155 raise ValueError(
'Trap location {0} must be less than {1}'.format(self.
pixel,
158 self.
_trap_array = np.zeros((ny, nx+prescan_width))
163 """Release charge through exponential decay.
167 released_charge : `float`
173 return released_charge
176 """Perform charge capture using a logistic function.
180 free_charge : `float`
181 Charge available to be trapped.
185 captured_charge : `float`
186 Amount of charge actually trapped.
192 return captured_charge
195 """Trap capture function.
199 pixel_signals : `list` [`float`]
204 captured_charge : `list` [`float`]
205 Amount of charge captured from each pixel.
210 Raised if the trap type is invalid.
214 return np.minimum(self.
size, pixel_signals*scaling)
217 return self.
size/(1.+np.exp(-k*(pixel_signals-f0)))
219 return self.
interp(pixel_signals)
221 raise RuntimeError(f
"Invalid trap capture type: {self.trap_type}.")
225 """Base class for handling model/data fit comparisons.
226 This handles all of the methods needed for the lmfit Minimizer to
232 """Generate a realization of the overscan model, using the specified
233 fit parameters and input signal.
237 params : `lmfit.Parameters`
238 Object containing the model parameters.
239 signal : `np.ndarray`, (nMeasurements)
240 Array of image means.
241 num_transfers : `int`
242 Number of serial transfers that the charge undergoes.
243 start : `int`, optional
244 First overscan column to fit. This number includes the
245 last imaging column, and needs to be adjusted by one when
246 using the overscan bounding box.
247 stop : `int`, optional
248 Last overscan column to fit. This number includes the
249 last imaging column, and needs to be adjusted by one when
250 using the overscan bounding box.
254 results : `np.ndarray`, (nMeasurements, nCols)
257 raise NotImplementedError(
"Subclasses must implement the model calculation.")
260 """Calculate log likelihood of the model.
264 params : `lmfit.Parameters`
265 Object containing the model parameters.
266 signal : `np.ndarray`, (nMeasurements)
267 Array of image means.
268 data : `np.ndarray`, (nMeasurements, nCols)
269 Array of overscan column means from each measurement.
273 Additional position arguments.
275 Additional keyword arguments.
280 The log-likelihood of the observed data given the model
283 model_results = self.
model_results(params, signal, *args, **kwargs)
285 inv_sigma2 = 1.0/(error**2.0)
286 diff = model_results - data
288 return -0.5*(np.sum(inv_sigma2*(diff)**2.))
291 """Calculate negative log likelihood of the model.
295 params : `lmfit.Parameters`
296 Object containing the model parameters.
297 signal : `np.ndarray`, (nMeasurements)
298 Array of image means.
299 data : `np.ndarray`, (nMeasurements, nCols)
300 Array of overscan column means from each measurement.
304 Additional position arguments.
306 Additional keyword arguments.
310 negativelogL : `float`
311 The negative log-likelihood of the observed data given the
314 ll = self.
loglikelihood(params, signal, data, error, *args, **kwargs)
318 def rms_error(self, params, signal, data, error, *args, **kwargs):
319 """Calculate RMS error between model and data.
323 params : `lmfit.Parameters`
324 Object containing the model parameters.
325 signal : `np.ndarray`, (nMeasurements)
326 Array of image means.
327 data : `np.ndarray`, (nMeasurements, nCols)
328 Array of overscan column means from each measurement.
332 Additional position arguments.
334 Additional keyword arguments.
339 The rms error between the model and input data.
341 model_results = self.
model_results(params, signal, *args, **kwargs)
343 diff = model_results - data
344 rms = np.sqrt(np.mean(np.square(diff)))
348 def difference(self, params, signal, data, error, *args, **kwargs):
349 """Calculate the flattened difference array between model and data.
353 params : `lmfit.Parameters`
354 Object containing the model parameters.
355 signal : `np.ndarray`, (nMeasurements)
356 Array of image means.
357 data : `np.ndarray`, (nMeasurements, nCols)
358 Array of overscan column means from each measurement.
362 Additional position arguments.
364 Additional keyword arguments.
368 difference : `np.ndarray`, (nMeasurements*nCols)
369 The rms error between the model and input data.
371 model_results = self.
model_results(params, signal, *args, **kwargs)
372 diff = (model_results-data).flatten()
378 """Simple analytic overscan model."""
382 """Generate a realization of the overscan model, using the specified
383 fit parameters and input signal.
387 params : `lmfit.Parameters`
388 Object containing the model parameters.
389 signal : `np.ndarray`, (nMeasurements)
390 Array of image means.
391 num_transfers : `int`
392 Number of serial transfers that the charge undergoes.
393 start : `int`, optional
394 First overscan column to fit. This number includes the
395 last imaging column, and needs to be adjusted by one when
396 using the overscan bounding box.
397 stop : `int`, optional
398 Last overscan column to fit. This number includes the
399 last imaging column, and needs to be adjusted by one when
400 using the overscan bounding box.
404 res : `np.ndarray`, (nMeasurements, nCols)
407 v = params.valuesdict()
408 v[
'cti'] = 10**v[
'ctiexp']
414 x = np.arange(start, stop+1)
415 res = np.zeros((signal.shape[0], x.shape[0]))
417 for i, s
in enumerate(signal):
425 res[i, :] = (np.minimum(v[
'trapsize'], s*v[
'scaling'])
426 * (np.exp(1/v[
'emissiontime']) - 1.0)
427 * np.exp(-x/v[
'emissiontime'])
428 + s*num_transfers*v[
'cti']**x
429 + v[
'driftscale']*s*np.exp(-x/float(v[
'decaytime'])))
435 """Simulated overscan model."""
438 def model_results(params, signal, num_transfers, amp, start=1, stop=10, trap_type=None):
439 """Generate a realization of the overscan model, using the specified
440 fit parameters and input signal.
444 params : `lmfit.Parameters`
445 Object containing the model parameters.
446 signal : `np.ndarray`, (nMeasurements)
447 Array of image means.
448 num_transfers : `int`
449 Number of serial transfers that the charge undergoes.
450 amp : `lsst.afw.cameraGeom.Amplifier`
451 Amplifier to use for geometry information.
452 start : `int`, optional
453 First overscan column to fit. This number includes the
454 last imaging column, and needs to be adjusted by one when
455 using the overscan bounding box.
456 stop : `int`, optional
457 Last overscan column to fit. This number includes the
458 last imaging column, and needs to be adjusted by one when
459 using the overscan bounding box.
460 trap_type : `str`, optional
461 Type of trap model to use.
465 results : `np.ndarray`, (nMeasurements, nCols)
468 v = params.valuesdict()
478 v[
'cti'] = 10**v[
'ctiexp']
481 if trap_type
is None:
483 elif trap_type ==
'linear':
484 trap =
SerialTrap(v[
'trapsize'], v[
'emissiontime'], 1,
'linear',
486 elif trap_type ==
'logistic':
487 trap =
SerialTrap(v[
'trapsize'], v[
'emissiontime'], 1,
'logistic',
490 raise ValueError(
'Trap type must be linear or logistic or None')
493 imarr = np.zeros((signal.shape[0], amp.getRawDataBBox().getWidth()))
494 ramp =
SegmentSimulator(imarr, amp.getRawSerialPrescanBBox().getWidth(), output_amplifier,
495 cti=v[
'cti'], traps=trap)
496 ramp.ramp_exp(signal)
497 model_results = ramp.readout(serial_overscan_width=amp.getRawSerialOverscanBBox().getWidth(),
498 parallel_overscan_width=0)
500 ncols = amp.getRawSerialPrescanBBox().getWidth() + amp.getRawDataBBox().getWidth()
502 return model_results[:, ncols+start-1:ncols+stop]
506 """Controls the creation of simulated segment images.
510 imarr : `np.ndarray` (nx, ny)
512 prescan_width : `int`
513 Number of serial prescan columns.
514 output_amplifier : `lsst.cp.pipe.FloatingOutputAmplifier`
515 An object holding some deferred charge parameters.
518 traps : `list` [`lsst.ip.isr.SerialTrap`]
519 Serial traps to simulate.
522 def __init__(self, imarr, prescan_width, output_amplifier, cti=0.0, traps=None):
528 self.
segarr[:, prescan_width:] = imarr
532 if isinstance(cti, np.ndarray):
533 raise ValueError(
"cti must be single value, not an array.")
538 if traps
is not None:
539 if not isinstance(traps, list):
545 """Add a trap to the serial register.
549 serial_trap : `lsst.ip.isr.SerialTrap`
554 except AttributeError:
559 """Simulate an image with varying flux illumination per row.
561 This method simulates a segment image where the signal level
562 increases along the horizontal direction, according to the
563 provided list of signal levels.
567 signal_list : `list` [`float`]
568 List of signal levels.
573 Raised if the length of the signal list does not equal the
576 if len(signal_list) != self.
ny:
577 raise ValueError(
"Signal list does not match row count.")
579 ramp = np.tile(signal_list, (self.
nx, 1)).T
582 def readout(self, serial_overscan_width=10, parallel_overscan_width=0):
583 """Simulate serial readout of the segment image.
585 This method performs the serial readout of a segment image
586 given the appropriate SerialRegister object and the properties
587 of the ReadoutAmplifier. Additional arguments can be provided
588 to account for the number of desired overscan transfers. The
589 result is a simulated final segment image, in ADU.
593 serial_overscan_width : `int`, optional
594 Number of serial overscan columns.
595 parallel_overscan_width : `int`, optional
596 Number of parallel overscan rows.
600 result : `np.ndarray` (nx, ny)
601 Simulated image, including serial prescan, serial
602 overscan, and parallel overscan regions. Result in electrons.
605 iy = int(self.
ny + parallel_overscan_width)
608 image = np.random.normal(
614 free_charge = copy.deepcopy(self.
segarr)
620 offset = np.zeros(self.
ny)
630 captured_charge = trap.trap_charge(free_charge)
631 free_charge -= captured_charge
634 transferred_charge = free_charge*cte
635 deferred_charge = free_charge*cti
639 transferred_charge[:, 0])
640 image[:iy-parallel_overscan_width, i] += transferred_charge[:, 0] + offset
642 free_charge = np.pad(transferred_charge, ((0, 0), (0, 1)),
643 mode=
'constant')[:, 1:] + deferred_charge
648 released_charge = trap.release_charge()
649 free_charge += released_charge
655 """Object representing the readout amplifier of a single channel.
660 Gain of the amplifier. Currently not used.
662 Drift scale for the amplifier.
664 Decay time for the bias drift.
665 noise : `float`, optional
666 Amplifier read noise.
667 offset : `float`, optional
671 def __init__(self, gain, scale, decay_time, noise=0.0, offset=0.0):
680 """Calculate local offset hysteresis.
684 old : `np.ndarray`, (,)
686 signal : `np.ndarray`, (,)
687 Current column measurements.
690 offset : `np.ndarray`
693 new = self.
scale*signal
698 """Update parameter values, if within acceptable values.
703 Drift scale for the amplifier.
705 Decay time for the bias drift.
710 Raised if the input parameters are out of range.
713 raise ValueError(
"Scale must be greater than or equal to 0.")
715 raise ValueError(
"Scale must be real-valued number, not NaN.")
717 if decay_time <= 0.0:
718 raise ValueError(
"Decay time must be greater than 0.")
719 if np.isnan(decay_time):
720 raise ValueError(
"Decay time must be real-valued number, not NaN.")
725 r"""Calibration containing deferred charge/CTI parameters.
730 Additional parameters to pass to parent constructor.
734 The charge transfer inefficiency attributes stored are:
736 driftScale : `dict` [`str`, `float`]
737 A dictionary, keyed by amplifier name, of the local electronic
738 offset drift scale parameter, A_L in Snyder+2021.
739 decayTime : `dict` [`str`, `float`]
740 A dictionary, keyed by amplifier name, of the local electronic
741 offset decay time, \tau_L in Snyder+2021.
742 globalCti : `dict` [`str`, `float`]
743 A dictionary, keyed by amplifier name, of the mean global CTI
744 paramter, b in Snyder+2021.
745 serialTraps : `dict` [`str`, `lsst.ip.isr.SerialTrap`]
746 A dictionary, keyed by amplifier name, containing a single
747 serial trap for each amplifier.
749 Also, the values contained in this calibration are all derived
750 from and image and overscan in units of electron as these are
751 the most natural units in which to compute deferred charge.
752 However, this means the the user should supply a reliable set
753 of gains when computing the CTI statistics during ISR.
755 Version 1.1 deprecates the USEGAINS attribute and standardizes
756 everything to electron units.
759 _SCHEMA =
'Deferred Charge'
769 if kwargs.pop(
"useGains",
None)
is not None:
770 warnings.warn(
"useGains is deprecated, and will be removed "
771 "after v28.", FutureWarning)
781 """Read metadata parameters from a detector.
785 detector : `lsst.afw.cameraGeom.detector`
786 Input detector with parameters to use.
790 calib : `lsst.ip.isr.Linearizer`
791 The calibration constructed from the detector.
798 """Construct a calibration from a dictionary of properties.
803 Dictionary of properties.
807 calib : `lsst.ip.isr.CalibType`
808 Constructed calibration.
813 Raised if the supplied dictionary is for a different
818 if calib._OBSTYPE != dictionary[
'metadata'][
'OBSTYPE']:
819 raise RuntimeError(f
"Incorrect CTI supplied. Expected {calib._OBSTYPE}, "
820 f
"found {dictionary['metadata']['OBSTYPE']}")
822 calib.setMetadata(dictionary[
'metadata'])
824 calib.driftScale = dictionary[
'driftScale']
825 calib.decayTime = dictionary[
'decayTime']
826 calib.globalCti = dictionary[
'globalCti']
828 for ampName
in dictionary[
'serialTraps']:
829 ampTraps = dictionary[
'serialTraps'][ampName]
830 calib.serialTraps[ampName] =
SerialTrap(ampTraps[
'size'], ampTraps[
'emissionTime'],
831 ampTraps[
'pixel'], ampTraps[
'trap_type'],
833 calib.updateMetadata()
837 """Return a dictionary containing the calibration properties.
838 The dictionary should be able to be round-tripped through
844 Dictionary of properties.
854 outDict[
'serialTraps'] = {}
857 'emissionTime': self.
serialTraps[ampName].emission_time,
861 outDict[
'serialTraps'][ampName] = ampTrap
867 """Construct calibration from a list of tables.
869 This method uses the ``fromDict`` method to create the
870 calibration, after constructing an appropriate dictionary from
875 tableList : `list` [`lsst.afw.table.Table`]
876 List of tables to use to construct the CTI
877 calibration. Two tables are expected in this list, the
878 first containing the per-amplifier CTI parameters, and the
879 second containing the parameters for serial traps.
883 calib : `lsst.ip.isr.DeferredChargeCalib`
884 The calibration defined in the tables.
889 Raised if the trap type or trap coefficients are not
892 ampTable = tableList[0]
895 inDict[
'metadata'] = ampTable.meta
896 calibVersion = inDict[
'metadata'][
'CTI_VERSION']
898 amps = ampTable[
'AMPLIFIER']
899 driftScale = ampTable[
'DRIFT_SCALE']
900 decayTime = ampTable[
'DECAY_TIME']
901 globalCti = ampTable[
'GLOBAL_CTI']
903 inDict[
'driftScale'] = {amp: value
for amp, value
in zip(amps, driftScale)}
904 inDict[
'decayTime'] = {amp: value
for amp, value
in zip(amps, decayTime)}
905 inDict[
'globalCti'] = {amp: value
for amp, value
in zip(amps, globalCti)}
907 inDict[
'serialTraps'] = {}
908 trapTable = tableList[1]
910 amps = trapTable[
'AMPLIFIER']
911 sizes = trapTable[
'SIZE']
912 emissionTimes = trapTable[
'EMISSION_TIME']
913 pixels = trapTable[
'PIXEL']
914 trap_type = trapTable[
'TYPE']
915 coeffs = trapTable[
'COEFFS']
917 for index, amp
in enumerate(amps):
919 ampTrap[
'size'] = sizes[index]
920 ampTrap[
'emissionTime'] = emissionTimes[index]
921 ampTrap[
'pixel'] = pixels[index]
922 ampTrap[
'trap_type'] = trap_type[index]
926 inCoeffs = coeffs[index]
928 nanValues = np.where(np.isnan(inCoeffs))[0]
929 if nanValues
is not None:
930 coeffLength = len(inCoeffs)
931 while breakIndex < coeffLength:
932 if coeffLength - breakIndex
in nanValues:
938 outCoeffs = inCoeffs[0: coeffLength - breakIndex]
941 ampTrap[
'coeffs'] = outCoeffs.tolist()
943 if ampTrap[
'trap_type'] ==
'linear':
944 if len(ampTrap[
'coeffs']) < 1:
945 raise ValueError(
"CTI Amplifier %s coefficients for trap has illegal length %d.",
946 amp, len(ampTrap[
'coeffs']))
947 elif ampTrap[
'trap_type'] ==
'logistic':
948 if len(ampTrap[
'coeffs']) < 2:
949 raise ValueError(
"CTI Amplifier %s coefficients for trap has illegal length %d.",
950 amp, len(ampTrap[
'coeffs']))
951 elif ampTrap[
'trap_type'] ==
'spline':
952 if len(ampTrap[
'coeffs']) % 2 != 0:
953 raise ValueError(
"CTI Amplifier %s coefficients for trap has illegal length %d.",
954 amp, len(ampTrap[
'coeffs']))
956 raise ValueError(
'Unknown trap type: %s', ampTrap[
'trap_type'])
958 inDict[
'serialTraps'][amp] = ampTrap
961 if calibVersion < 1.1:
965 raise RuntimeError(f
"Using old version of CTI calibration (ver. {calibVersion} < 1.1), "
966 "which is no longer supported.")
971 """Construct a list of tables containing the information in this
974 The list of tables should create an identical calibration
975 after being passed to this class's fromTable method.
979 tableList : `list` [`lsst.afw.table.Table`]
980 List of tables containing the crosstalk calibration
981 information. Two tables are generated for this list, the
982 first containing the per-amplifier CTI parameters, and the
983 second containing the parameters for serial traps.
999 ampTable = Table({
'AMPLIFIER': ampList,
1000 'DRIFT_SCALE': driftScale,
1001 'DECAY_TIME': decayTime,
1002 'GLOBAL_CTI': globalCti,
1006 tableList.append(ampTable)
1018 maxCoeffLength = np.maximum(maxCoeffLength, len(trap.coeffs))
1023 sizeList.append(trap.size)
1024 timeList.append(trap.emission_time)
1025 pixelList.append(trap.pixel)
1026 typeList.append(trap.trap_type)
1028 coeffs = trap.coeffs
1029 if len(coeffs) != maxCoeffLength:
1030 coeffs = np.pad(coeffs, (0, maxCoeffLength - len(coeffs)),
1031 constant_values=np.nan).tolist()
1032 coeffList.append(coeffs)
1034 trapTable = Table({
'AMPLIFIER': ampList,
1036 'EMISSION_TIME': timeList,
1039 'COEFFS': coeffList})
1041 tableList.append(trapTable)
1047 """Settings for deferred charge correction.
1051 doc=
"Number of prior pixels to use for local offset correction.",
1056 doc=
"Number of prior pixels to use for trap correction.",
1061 doc=
"If true, scale by the gain.",
1064 deprecated=
"This field is no longer used. Will be removed after v28.",
1068 doc=
"If true, set serial prescan and parallel overscan to zero before correction.",
1074 """Task to correct an exposure for charge transfer inefficiency.
1076 This uses the methods described by Snyder et al. 2021, Journal of
1077 Astronimcal Telescopes, Instruments, and Systems, 7,
1078 048002. doi:10.1117/1.JATIS.7.4.048002 (Snyder+21).
1080 ConfigClass = DeferredChargeConfig
1081 _DefaultName =
'isrDeferredCharge'
1083 def run(self, exposure, ctiCalib, gains=None):
1084 """Correct deferred charge/CTI issues.
1088 exposure : `lsst.afw.image.Exposure`
1089 Exposure to correct the deferred charge on.
1090 ctiCalib : `lsst.ip.isr.DeferredChargeCalib`
1091 Calibration object containing the charge transfer
1093 gains : `dict` [`str`, `float`]
1094 A dictionary, keyed by amplifier name, of the gains to
1095 use. If gains is None, the nominal gains in the amplifier
1100 exposure : `lsst.afw.image.Exposure`
1101 The corrected exposure.
1105 This task will read the exposure metadata and determine if
1106 applying gains if necessary. The correction takes place in
1107 units of electrons. If bootstrapping, the gains used
1108 will just be 1.0. and the input/output units will stay in
1109 adu. If the input image is in adu, the output image will be
1110 in units of electrons. If the input image is in electron,
1111 the output image will be in electron.
1113 image = exposure.getMaskedImage().image
1114 detector = exposure.getDetector()
1117 imageUnits = exposure.getMetadata().get(
"LSST ISR UNITS")
1122 if imageUnits ==
"adu":
1130 raise RuntimeError(
"No gains supplied for deferred charge correction.")
1132 with gainContext(exposure, image, apply=applyGains, gains=gains, isTrimmed=
False):
1134 for amp
in detector.getAmplifiers():
1135 ampName = amp.getName()
1137 ampImage = image[amp.getRawBBox()]
1138 if self.config.zeroUnusedPixels:
1141 ampImage[amp.getRawParallelOverscanBBox()].array[:, :] = 0.0
1142 ampImage[amp.getRawSerialPrescanBBox()].array[:, :] = 0.0
1146 ampData = self.
flipData(ampImage.array, amp)
1148 if ctiCalib.driftScale[ampName] > 0.0:
1150 ctiCalib.driftScale[ampName],
1151 ctiCalib.decayTime[ampName],
1152 self.config.nPixelOffsetCorrection)
1154 correctedAmpData = ampData.copy()
1157 ctiCalib.serialTraps[ampName],
1158 ctiCalib.globalCti[ampName],
1159 self.config.nPixelTrapCorrection)
1162 correctedAmpData = self.
flipData(correctedAmpData, amp)
1163 image[amp.getRawBBox()].array[:, :] = correctedAmpData[:, :]
1169 """Flip data array such that readout corner is at lower-left.
1173 ampData : `numpy.ndarray`, (nx, ny)
1175 amp : `lsst.afw.cameraGeom.Amplifier`
1176 Amplifier to get readout corner information.
1180 ampData : `numpy.ndarray`, (nx, ny)
1183 X_FLIP = {ReadoutCorner.LL:
False,
1184 ReadoutCorner.LR:
True,
1185 ReadoutCorner.UL:
False,
1186 ReadoutCorner.UR:
True}
1187 Y_FLIP = {ReadoutCorner.LL:
False,
1188 ReadoutCorner.LR:
False,
1189 ReadoutCorner.UL:
True,
1190 ReadoutCorner.UR:
True}
1192 if X_FLIP[amp.getReadoutCorner()]:
1193 ampData = np.fliplr(ampData)
1194 if Y_FLIP[amp.getReadoutCorner()]:
1195 ampData = np.flipud(ampData)
1201 r"""Remove CTI effects from local offsets.
1203 This implements equation 10 of Snyder+21. For an image with
1204 CTI, s'(m, n), the correction factor is equal to the maximum
1205 value of the set of:
1209 {A_L s'(m, n - j) exp(-j t / \tau_L)}_j=0^jmax
1213 inputArr : `numpy.ndarray`, (nx, ny)
1214 Input image data to correct.
1215 drift_scale : `float`
1216 Drift scale (Snyder+21 A_L value) to use in correction.
1217 decay_time : `float`
1218 Decay time (Snyder+21 \tau_L) of the correction.
1219 num_previous_pixels : `int`, optional
1220 Number of previous pixels to use for correction. As the
1221 CTI has an exponential decay, this essentially truncates
1222 the correction where that decay scales the input charge to
1227 outputArr : `numpy.ndarray`, (nx, ny)
1228 Corrected image data.
1230 r = np.exp(-1/decay_time)
1231 Ny, Nx = inputArr.shape
1234 offset = np.zeros((num_previous_pixels, Ny, Nx))
1235 offset[0, :, :] = drift_scale*np.maximum(0, inputArr)
1238 for n
in range(1, num_previous_pixels):
1239 offset[n, :, n:] = drift_scale*np.maximum(0, inputArr[:, :-n])*(r**n)
1241 Linv = np.amax(offset, axis=0)
1242 outputArr = inputArr - Linv
1248 r"""Apply localized trapping inverse operator to pixel signals.
1250 This implements equation 13 of Snyder+21. For an image with
1251 CTI, s'(m, n), the correction factor is equal to the maximum
1252 value of the set of:
1256 {A_L s'(m, n - j) exp(-j t / \tau_L)}_j=0^jmax
1260 inputArr : `numpy.ndarray`, (nx, ny)
1261 Input image data to correct.
1262 trap : `lsst.ip.isr.SerialTrap`
1263 Serial trap describing the capture and release of charge.
1265 Mean charge transfer inefficiency, b from Snyder+21.
1266 num_previous_pixels : `int`, optional
1267 Number of previous pixels to use for correction.
1271 outputArr : `numpy.ndarray`, (nx, ny)
1272 Corrected image data.
1275 Ny, Nx = inputArr.shape
1277 r = np.exp(-1/trap.emission_time)
1280 trap_occupancy = np.zeros((num_previous_pixels, Ny, Nx))
1281 for n
in range(num_previous_pixels):
1282 trap_occupancy[n, :, n+1:] = trap.capture(np.maximum(0, inputArr))[:, :-(n+1)]*(r**n)
1283 trap_occupancy = np.amax(trap_occupancy, axis=0)
1286 C = trap.capture(np.maximum(0, inputArr)) - trap_occupancy*r
1290 R = np.zeros(inputArr.shape)
1291 R[:, 1:] = trap_occupancy[:, 1:]*(1-r)
1294 outputArr = inputArr - a*T
std::vector< SchemaItem< Flag > > * items
fromDict(cls, dictionary, **kwargs)
requiredAttributes(self, value)
updateMetadata(self, camera=None, detector=None, filterName=None, setCalibId=False, setCalibInfo=False, setDate=False, **kwargs)
fromTable(cls, tableList)
fromDict(cls, dictionary)
fromDetector(self, detector)
local_trap_inverse(inputArr, trap, global_cti=0.0, num_previous_pixels=6)
local_offset_inverse(inputArr, drift_scale, decay_time, num_previous_pixels=15)
run(self, exposure, ctiCalib, gains=None)
__init__(self, gain, scale, decay_time, noise=0.0, offset=0.0)
local_offset(self, old, signal)
update_parameters(self, scale, decay_time)
negative_loglikelihood(self, params, signal, data, error, *args, **kwargs)
loglikelihood(self, params, signal, data, error, *args, **kwargs)
rms_error(self, params, signal, data, error, *args, **kwargs)
difference(self, params, signal, data, error, *args, **kwargs)
model_results(params, signal, num_transfers, start=1, stop=10)
ramp_exp(self, signal_list)
add_trap(self, serial_trap)
readout(self, serial_overscan_width=10, parallel_overscan_width=0)
__init__(self, imarr, prescan_width, output_amplifier, cti=0.0, traps=None)
__init__(self, size, emission_time, pixel, trap_type, coeffs)
capture(self, pixel_signals)
initialize(self, ny, nx, prescan_width)
trap_charge(self, free_charge)
model_results(params, signal, num_transfers, start=1, stop=10)
model_results(params, signal, num_transfers, amp, start=1, stop=10, trap_type=None)