LSST Applications g00d0e8bbd7+edbf708997,g03191d30f7+6b31559d11,g118115db7c+ac820e85d2,g199a45376c+5137f08352,g1fd858c14a+90100aa1a7,g262e1987ae+64df5f6984,g29ae962dfc+1eb4aece83,g2cef7863aa+73c82f25e4,g3541666cd7+1e37cdad5c,g35bb328faa+edbf708997,g3fd5ace14f+fb4e2866cc,g47891489e3+19fcc35de2,g53246c7159+edbf708997,g5b326b94bb+d622351b67,g64539dfbff+dfe1dff262,g67b6fd64d1+19fcc35de2,g74acd417e5+cfdc02aca8,g786e29fd12+af89c03590,g7aefaa3e3d+dc1a598170,g87389fa792+a4172ec7da,g88cb488625+60ba2c3075,g89139ef638+19fcc35de2,g8d4809ba88+dfe1dff262,g8d7436a09f+db94b797be,g8ea07a8fe4+79658f16ab,g90f42f885a+6577634e1f,g9722cb1a7f+d8f85438e7,g98df359435+7fdd888faa,ga2180abaac+edbf708997,ga9e74d7ce9+128cc68277,gbf99507273+edbf708997,gca7fc764a6+19fcc35de2,gd7ef33dd92+19fcc35de2,gdab6d2f7ff+cfdc02aca8,gdbb4c4dda9+dfe1dff262,ge410e46f29+19fcc35de2,ge41e95a9f2+dfe1dff262,geaed405ab2+062dfc8cdc,w.2025.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
deferredCharge.py
Go to the documentation of this file.
1# This file is part of ip_isr.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22__all__ = ('DeferredChargeConfig',
23 'DeferredChargeTask',
24 'SerialTrap',
25 'OverscanModel',
26 'SimpleModel',
27 'SimulatedModel',
28 'SegmentSimulator',
29 'FloatingOutputAmplifier',
30 'DeferredChargeCalib',
31 )
32
33import copy
34import numpy as np
35import warnings
36from astropy.table import Table
37
38from lsst.afw.cameraGeom import ReadoutCorner
39from lsst.pex.config import Config, Field
40from lsst.pipe.base import Task
41from .isrFunctions import gainContext
42from .calibType import IsrCalib
43
44import scipy.interpolate as interp
45
46
47class SerialTrap():
48 """Represents a serial register trap.
49
50 Parameters
51 ----------
52 size : `float`
53 Size of the charge trap, in electrons.
54 emission_time : `float`
55 Trap emission time constant, in inverse transfers.
56 pixel : `int`
57 Serial pixel location of the trap, including the prescan.
58 trap_type : `str`
59 Type of trap capture to use. Should be one of ``linear``,
60 ``logistic``, or ``spline``.
61 coeffs : `list` [`float`]
62 Coefficients for the capture process. Linear traps need one
63 coefficient, logistic traps need two, and spline based traps
64 need to have an even number of coefficients that can be split
65 into their spline locations and values.
66
67 Raises
68 ------
69 ValueError
70 Raised if the specified parameters are out of expected range.
71 """
72
73 def __init__(self, size, emission_time, pixel, trap_type, coeffs):
74 if size < 0.0:
75 raise ValueError('Trap size must be greater than or equal to 0.')
76 self.size = size
77
78 if emission_time <= 0.0:
79 raise ValueError('Emission time must be greater than 0.')
80 if np.isnan(emission_time):
81 raise ValueError('Emission time must be real-valued, not NaN')
82 self.emission_time = emission_time
83
84 if int(pixel) != pixel:
85 raise ValueError('Fraction value for pixel not allowed.')
86 self.pixel = int(pixel)
87
88 self.trap_type = trap_type
89 self.coeffs = coeffs
90
91 if self.trap_type not in ('linear', 'logistic', 'spline'):
92 raise ValueError('Unknown trap type: %s', self.trap_type)
93
94 if self.trap_type == 'spline':
95 # Note that ``spline`` is actually a piecewise linear interpolation
96 # in the model and the application, and not a true spline.
97 centers, values = np.split(np.array(self.coeffs, dtype=np.float64), 2)
98 # Ensure all NaN values are stripped out
99 values = values[~np.isnan(centers)]
100 centers = centers[~np.isnan(centers)]
101 centers = centers[~np.isnan(values)]
102 values = values[~np.isnan(values)]
103 self.interp = interp.interp1d(
104 centers,
105 values,
106 bounds_error=False,
107 fill_value=(values[0], values[-1]),
108 )
109
110 self._trap_array = None
111 self._trapped_charge = None
112
113 def __eq__(self, other):
114 # A trap is equal to another trap if all of the initialization
115 # parameters are equal. All other properties are only filled
116 # during use, and are not persisted into the calibration.
117 if self.size != other.size:
118 return False
119 if self.emission_time != other.emission_time:
120 return False
121 if self.pixel != other.pixel:
122 return False
123 if self.trap_type != other.trap_type:
124 return False
125 if self.coeffs != other.coeffs:
126 return False
127 return True
128
129 @property
130 def trap_array(self):
131 return self._trap_array
132
133 @property
134 def trapped_charge(self):
135 return self._trapped_charge
136
137 def initialize(self, ny, nx, prescan_width):
138 """Initialize trapping arrays for simulated readout.
139
140 Parameters
141 ----------
142 ny : `int`
143 Number of rows to simulate.
144 nx : `int`
145 Number of columns to simulate.
146 prescan_width : `int`
147 Additional transfers due to prescan.
148
149 Raises
150 ------
151 ValueError
152 Raised if the trap falls outside of the image.
153 """
154 if self.pixel > nx+prescan_width:
155 raise ValueError('Trap location {0} must be less than {1}'.format(self.pixel,
156 nx+prescan_width))
157
158 self._trap_array = np.zeros((ny, nx+prescan_width))
159 self._trap_array[:, self.pixel] = self.size
160 self._trapped_charge = np.zeros((ny, nx+prescan_width))
161
162 def release_charge(self):
163 """Release charge through exponential decay.
164
165 Returns
166 -------
167 released_charge : `float`
168 Charge released.
169 """
170 released_charge = self._trapped_charge*(1-np.exp(-1./self.emission_time))
171 self._trapped_charge -= released_charge
172
173 return released_charge
174
175 def trap_charge(self, free_charge):
176 """Perform charge capture using a logistic function.
177
178 Parameters
179 ----------
180 free_charge : `float`
181 Charge available to be trapped.
182
183 Returns
184 -------
185 captured_charge : `float`
186 Amount of charge actually trapped.
187 """
188 captured_charge = (np.clip(self.capture(free_charge), self.trapped_charge, self._trap_array)
189 - self.trapped_charge)
190 self._trapped_charge += captured_charge
191
192 return captured_charge
193
194 def capture(self, pixel_signals):
195 """Trap capture function.
196
197 Parameters
198 ----------
199 pixel_signals : `list` [`float`]
200 Input pixel values.
201
202 Returns
203 -------
204 captured_charge : `list` [`float`]
205 Amount of charge captured from each pixel.
206
207 Raises
208 ------
209 RuntimeError
210 Raised if the trap type is invalid.
211 """
212 if self.trap_type == 'linear':
213 scaling = self.coeffs[0]
214 return np.minimum(self.size, pixel_signals*scaling)
215 elif self.trap_type == 'logistic':
216 f0, k = (self.coeffs[0], self.coeffs[1])
217 return self.size/(1.+np.exp(-k*(pixel_signals-f0)))
218 elif self.trap_type == 'spline':
219 return self.interp(pixel_signals)
220 else:
221 raise RuntimeError(f"Invalid trap capture type: {self.trap_type}.")
222
223
225 """Base class for handling model/data fit comparisons.
226 This handles all of the methods needed for the lmfit Minimizer to
227 run.
228 """
229
230 @staticmethod
231 def model_results(params, signal, num_transfers, start=1, stop=10):
232 """Generate a realization of the overscan model, using the specified
233 fit parameters and input signal.
234
235 Parameters
236 ----------
237 params : `lmfit.Parameters`
238 Object containing the model parameters.
239 signal : `np.ndarray`, (nMeasurements)
240 Array of image means.
241 num_transfers : `int`
242 Number of serial transfers that the charge undergoes.
243 start : `int`, optional
244 First overscan column to fit. This number includes the
245 last imaging column, and needs to be adjusted by one when
246 using the overscan bounding box.
247 stop : `int`, optional
248 Last overscan column to fit. This number includes the
249 last imaging column, and needs to be adjusted by one when
250 using the overscan bounding box.
251
252 Returns
253 -------
254 results : `np.ndarray`, (nMeasurements, nCols)
255 Model results.
256 """
257 raise NotImplementedError("Subclasses must implement the model calculation.")
258
259 def loglikelihood(self, params, signal, data, error, *args, **kwargs):
260 """Calculate log likelihood of the model.
261
262 Parameters
263 ----------
264 params : `lmfit.Parameters`
265 Object containing the model parameters.
266 signal : `np.ndarray`, (nMeasurements)
267 Array of image means.
268 data : `np.ndarray`, (nMeasurements, nCols)
269 Array of overscan column means from each measurement.
270 error : `float`
271 Fixed error value.
272 *args :
273 Additional position arguments.
274 **kwargs :
275 Additional keyword arguments.
276
277 Returns
278 -------
279 logL : `float`
280 The log-likelihood of the observed data given the model
281 parameters.
282 """
283 model_results = self.model_results(params, signal, *args, **kwargs)
284
285 inv_sigma2 = 1.0/(error**2.0)
286 diff = model_results - data
287
288 return -0.5*(np.sum(inv_sigma2*(diff)**2.))
289
290 def negative_loglikelihood(self, params, signal, data, error, *args, **kwargs):
291 """Calculate negative log likelihood of the model.
292
293 Parameters
294 ----------
295 params : `lmfit.Parameters`
296 Object containing the model parameters.
297 signal : `np.ndarray`, (nMeasurements)
298 Array of image means.
299 data : `np.ndarray`, (nMeasurements, nCols)
300 Array of overscan column means from each measurement.
301 error : `float`
302 Fixed error value.
303 *args :
304 Additional position arguments.
305 **kwargs :
306 Additional keyword arguments.
307
308 Returns
309 -------
310 negativelogL : `float`
311 The negative log-likelihood of the observed data given the
312 model parameters.
313 """
314 ll = self.loglikelihood(params, signal, data, error, *args, **kwargs)
315
316 return -ll
317
318 def rms_error(self, params, signal, data, error, *args, **kwargs):
319 """Calculate RMS error between model and data.
320
321 Parameters
322 ----------
323 params : `lmfit.Parameters`
324 Object containing the model parameters.
325 signal : `np.ndarray`, (nMeasurements)
326 Array of image means.
327 data : `np.ndarray`, (nMeasurements, nCols)
328 Array of overscan column means from each measurement.
329 error : `float`
330 Fixed error value.
331 *args :
332 Additional position arguments.
333 **kwargs :
334 Additional keyword arguments.
335
336 Returns
337 -------
338 rms : `float`
339 The rms error between the model and input data.
340 """
341 model_results = self.model_results(params, signal, *args, **kwargs)
342
343 diff = model_results - data
344 rms = np.sqrt(np.mean(np.square(diff)))
345
346 return rms
347
348 def difference(self, params, signal, data, error, *args, **kwargs):
349 """Calculate the flattened difference array between model and data.
350
351 Parameters
352 ----------
353 params : `lmfit.Parameters`
354 Object containing the model parameters.
355 signal : `np.ndarray`, (nMeasurements)
356 Array of image means.
357 data : `np.ndarray`, (nMeasurements, nCols)
358 Array of overscan column means from each measurement.
359 error : `float`
360 Fixed error value.
361 *args :
362 Additional position arguments.
363 **kwargs :
364 Additional keyword arguments.
365
366 Returns
367 -------
368 difference : `np.ndarray`, (nMeasurements*nCols)
369 The rms error between the model and input data.
370 """
371 model_results = self.model_results(params, signal, *args, **kwargs)
372 diff = (model_results-data).flatten()
373
374 return diff
375
376
378 """Simple analytic overscan model."""
379
380 @staticmethod
381 def model_results(params, signal, num_transfers, start=1, stop=10):
382 """Generate a realization of the overscan model, using the specified
383 fit parameters and input signal.
384
385 Parameters
386 ----------
387 params : `lmfit.Parameters`
388 Object containing the model parameters.
389 signal : `np.ndarray`, (nMeasurements)
390 Array of image means.
391 num_transfers : `int`
392 Number of serial transfers that the charge undergoes.
393 start : `int`, optional
394 First overscan column to fit. This number includes the
395 last imaging column, and needs to be adjusted by one when
396 using the overscan bounding box.
397 stop : `int`, optional
398 Last overscan column to fit. This number includes the
399 last imaging column, and needs to be adjusted by one when
400 using the overscan bounding box.
401
402 Returns
403 -------
404 res : `np.ndarray`, (nMeasurements, nCols)
405 Model results.
406 """
407 v = params.valuesdict()
408 v['cti'] = 10**v['ctiexp']
409
410 # Adjust column numbering to match DM overscan bbox.
411 start += 1
412 stop += 1
413
414 x = np.arange(start, stop+1)
415 res = np.zeros((signal.shape[0], x.shape[0]))
416
417 for i, s in enumerate(signal):
418 # This is largely equivalent to equation 2. The minimum
419 # indicates that a trap cannot emit more charge than is
420 # available, nor can it emit more charge than it can hold.
421 # This scales the exponential release of charge from the
422 # trap. The next term defines the contribution from the
423 # global CTI at each pixel transfer, and the final term
424 # includes the contribution from local CTI effects.
425 res[i, :] = (np.minimum(v['trapsize'], s*v['scaling'])
426 * (np.exp(1/v['emissiontime']) - 1.0)
427 * np.exp(-x/v['emissiontime'])
428 + s*num_transfers*v['cti']**x
429 + v['driftscale']*s*np.exp(-x/float(v['decaytime'])))
430
431 return res
432
433
435 """Simulated overscan model."""
436
437 @staticmethod
438 def model_results(params, signal, num_transfers, amp, start=1, stop=10, trap_type=None):
439 """Generate a realization of the overscan model, using the specified
440 fit parameters and input signal.
441
442 Parameters
443 ----------
444 params : `lmfit.Parameters`
445 Object containing the model parameters.
446 signal : `np.ndarray`, (nMeasurements)
447 Array of image means.
448 num_transfers : `int`
449 Number of serial transfers that the charge undergoes.
450 amp : `lsst.afw.cameraGeom.Amplifier`
451 Amplifier to use for geometry information.
452 start : `int`, optional
453 First overscan column to fit. This number includes the
454 last imaging column, and needs to be adjusted by one when
455 using the overscan bounding box.
456 stop : `int`, optional
457 Last overscan column to fit. This number includes the
458 last imaging column, and needs to be adjusted by one when
459 using the overscan bounding box.
460 trap_type : `str`, optional
461 Type of trap model to use.
462
463 Returns
464 -------
465 results : `np.ndarray`, (nMeasurements, nCols)
466 Model results.
467 """
468 v = params.valuesdict()
469
470 # Adjust column numbering to match DM overscan bbox.
471 start += 1
472 stop += 1
473
474 # Electronics effect optimization
475 output_amplifier = FloatingOutputAmplifier(1.0, v['driftscale'], v['decaytime'])
476
477 # CTI optimization
478 v['cti'] = 10**v['ctiexp']
479
480 # Trap type for optimization
481 if trap_type is None:
482 trap = None
483 elif trap_type == 'linear':
484 trap = SerialTrap(v['trapsize'], v['emissiontime'], 1, 'linear',
485 [v['scaling']])
486 elif trap_type == 'logistic':
487 trap = SerialTrap(v['trapsize'], v['emissiontime'], 1, 'logistic',
488 [v['f0'], v['k']])
489 else:
490 raise ValueError('Trap type must be linear or logistic or None')
491
492 # Simulate ramp readout
493 imarr = np.zeros((signal.shape[0], amp.getRawDataBBox().getWidth()))
494 ramp = SegmentSimulator(imarr, amp.getRawSerialPrescanBBox().getWidth(), output_amplifier,
495 cti=v['cti'], traps=trap)
496 ramp.ramp_exp(signal)
497 model_results = ramp.readout(serial_overscan_width=amp.getRawSerialOverscanBBox().getWidth(),
498 parallel_overscan_width=0)
499
500 ncols = amp.getRawSerialPrescanBBox().getWidth() + amp.getRawDataBBox().getWidth()
501
502 return model_results[:, ncols+start-1:ncols+stop]
503
504
506 """Controls the creation of simulated segment images.
507
508 Parameters
509 ----------
510 imarr : `np.ndarray` (nx, ny)
511 Image data array.
512 prescan_width : `int`
513 Number of serial prescan columns.
514 output_amplifier : `lsst.cp.pipe.FloatingOutputAmplifier`
515 An object holding some deferred charge parameters.
516 cti : `float`
517 Global CTI value.
518 traps : `list` [`lsst.ip.isr.SerialTrap`]
519 Serial traps to simulate.
520 """
521
522 def __init__(self, imarr, prescan_width, output_amplifier, cti=0.0, traps=None):
523 # Image array geometry
524 self.prescan_width = prescan_width
525 self.ny, self.nx = imarr.shape
526
527 self.segarr = np.zeros((self.ny, self.nx+prescan_width))
528 self.segarr[:, prescan_width:] = imarr
529
530 # Serial readout information
531 self.output_amplifier = output_amplifier
532 if isinstance(cti, np.ndarray):
533 raise ValueError("cti must be single value, not an array.")
534 self.cti = cti
535
536 self.serial_traps = None
537 self.do_trapping = False
538 if traps is not None:
539 if not isinstance(traps, list):
540 traps = [traps]
541 for trap in traps:
542 self.add_trap(trap)
543
544 def add_trap(self, serial_trap):
545 """Add a trap to the serial register.
546
547 Parameters
548 ----------
549 serial_trap : `lsst.ip.isr.SerialTrap`
550 The trap to add.
551 """
552 try:
553 self.serial_traps.append(serial_trap)
554 except AttributeError:
555 self.serial_traps = [serial_trap]
556 self.do_trapping = True
557
558 def ramp_exp(self, signal_list):
559 """Simulate an image with varying flux illumination per row.
560
561 This method simulates a segment image where the signal level
562 increases along the horizontal direction, according to the
563 provided list of signal levels.
564
565 Parameters
566 ----------
567 signal_list : `list` [`float`]
568 List of signal levels.
569
570 Raises
571 ------
572 ValueError
573 Raised if the length of the signal list does not equal the
574 number of rows.
575 """
576 if len(signal_list) != self.ny:
577 raise ValueError("Signal list does not match row count.")
578
579 ramp = np.tile(signal_list, (self.nx, 1)).T
580 self.segarr[:, self.prescan_width:] += ramp
581
582 def readout(self, serial_overscan_width=10, parallel_overscan_width=0):
583 """Simulate serial readout of the segment image.
584
585 This method performs the serial readout of a segment image
586 given the appropriate SerialRegister object and the properties
587 of the ReadoutAmplifier. Additional arguments can be provided
588 to account for the number of desired overscan transfers. The
589 result is a simulated final segment image, in ADU.
590
591 Parameters
592 ----------
593 serial_overscan_width : `int`, optional
594 Number of serial overscan columns.
595 parallel_overscan_width : `int`, optional
596 Number of parallel overscan rows.
597
598 Returns
599 -------
600 result : `np.ndarray` (nx, ny)
601 Simulated image, including serial prescan, serial
602 overscan, and parallel overscan regions. Result in electrons.
603 """
604 # Create output array
605 iy = int(self.ny + parallel_overscan_width)
606 ix = int(self.nx + self.prescan_width + serial_overscan_width)
607
608 image = np.random.default_rng().normal(
609 loc=self.output_amplifier.global_offset,
610 scale=self.output_amplifier.noise,
611 size=(iy, ix),
612 )
613
614 free_charge = copy.deepcopy(self.segarr)
615
616 # Set flow control parameters
617 do_trapping = self.do_trapping
618 cti = self.cti
619
620 offset = np.zeros(self.ny)
621 cte = 1 - cti
622 if do_trapping:
623 for trap in self.serial_traps:
624 trap.initialize(self.ny, self.nx, self.prescan_width)
625
626 for i in range(ix):
627 # Trap capture
628 if do_trapping:
629 for trap in self.serial_traps:
630 captured_charge = trap.trap_charge(free_charge)
631 free_charge -= captured_charge
632
633 # Pixel-to-pixel proportional loss
634 transferred_charge = free_charge*cte
635 deferred_charge = free_charge*cti
636
637 # Pixel transfer and readout
638 offset = self.output_amplifier.local_offset(offset,
639 transferred_charge[:, 0])
640 image[:iy-parallel_overscan_width, i] += transferred_charge[:, 0] + offset
641
642 free_charge = np.pad(transferred_charge, ((0, 0), (0, 1)),
643 mode='constant')[:, 1:] + deferred_charge
644
645 # Trap emission
646 if do_trapping:
647 for trap in self.serial_traps:
648 released_charge = trap.release_charge()
649 free_charge += released_charge
650
651 return image
652
653
655 """Object representing the readout amplifier of a single channel.
656
657 Parameters
658 ----------
659 gain : `float`
660 Gain of the amplifier. Currently not used.
661 scale : `float`
662 Drift scale for the amplifier.
663 decay_time : `float`
664 Decay time for the bias drift.
665 noise : `float`, optional
666 Amplifier read noise.
667 offset : `float`, optional
668 Global CTI offset.
669 """
670
671 def __init__(self, gain, scale, decay_time, noise=0.0, offset=0.0):
672
673 self.gain = gain
674 self.noise = noise
675 self.global_offset = offset
676
677 self.update_parameters(scale, decay_time)
678
679 def local_offset(self, old, signal):
680 """Calculate local offset hysteresis.
681
682 Parameters
683 ----------
684 old : `np.ndarray`, (,)
685 Previous iteration.
686 signal : `np.ndarray`, (,)
687 Current column measurements.
688 Returns
689 -------
690 offset : `np.ndarray`
691 Local offset.
692 """
693 new = self.scale*signal
694
695 return np.maximum(new, old*np.exp(-1/self.decay_time))
696
697 def update_parameters(self, scale, decay_time):
698 """Update parameter values, if within acceptable values.
699
700 Parameters
701 ----------
702 scale : `float`
703 Drift scale for the amplifier.
704 decay_time : `float`
705 Decay time for the bias drift.
706
707 Raises
708 ------
709 ValueError
710 Raised if the input parameters are out of range.
711 """
712 if scale < 0.0:
713 raise ValueError("Scale must be greater than or equal to 0.")
714 if np.isnan(scale):
715 raise ValueError("Scale must be real-valued number, not NaN.")
716 self.scale = scale
717 if decay_time <= 0.0:
718 raise ValueError("Decay time must be greater than 0.")
719 if np.isnan(decay_time):
720 raise ValueError("Decay time must be real-valued number, not NaN.")
721 self.decay_time = decay_time
722
723
725 r"""Calibration containing deferred charge/CTI parameters.
726
727 This includes, parameters from Snyder+2021 and exstimates of
728 the serial and parallel CTI using the extended pixel edge
729 response (EPER) method (also defined in Snyder+2021).
730
731 Parameters
732 ----------
733 **kwargs :
734 Additional parameters to pass to parent constructor.
735
736 Notes
737 -----
738 The charge transfer inefficiency attributes stored are:
739
740 driftScale : `dict` [`str`, `float`]
741 A dictionary, keyed by amplifier name, of the local electronic
742 offset drift scale parameter, A_L in Snyder+2021.
743 decayTime : `dict` [`str`, `float`]
744 A dictionary, keyed by amplifier name, of the local electronic
745 offset decay time, \tau_L in Snyder+2021.
746 globalCti : `dict` [`str`, `float`]
747 A dictionary, keyed by amplifier name, of the mean global CTI
748 paramter, b in Snyder+2021.
749 serialTraps : `dict` [`str`, `lsst.ip.isr.SerialTrap`]
750 A dictionary, keyed by amplifier name, containing a single
751 serial trap for each amplifier.
752 signals : `dict` [`str`, `np.ndarray`]
753 A dictionary, keyed by amplifier name, of the mean signal
754 level for each input measurement.
755 inputGain : `dict` [`str`, `float`]
756 A dictionary, keyed by amplifier name of the input gain used
757 to calculate the overscan statistics and produce this calib.
758 serialEper : `dict` [`str`, `np.ndarray`, `float`]
759 A dictionary, keyed by amplifier name, of the serial EPER
760 estimator of serial CTI, given in a list for each input
761 measurement.
762 parallelEper : `dict` [`str`, `np.ndarray`, `float`]
763 A dictionary, keyed by amplifier name, of the parallel
764 EPER estimator of parallel CTI, given in a list for each
765 input measurement.
766 serialCtiTurnoff : `dict` [`str`, `float`]
767 A dictionary, keyed by amplifier name, of the serial CTI
768 turnoff (unit: electrons).
769 parallelCtiTurnoff : `dict` [`str`, `float`]
770 A dictionary, keyed by amplifier name, of the parallel CTI
771 turnoff (unit: electrons).
772 serialCtiTurnoffSamplingErr : `dict` [`str`, `float`]
773 A dictionary, keyed by amplifier name, of the serial CTI
774 turnoff sampling error (unit: electrons).
775 parallelCtiTurnoffSamplingErr : `dict` [`str`, `float`]
776 A dictionary, keyed by amplifier name, of the parallel CTI
777 turnoff sampling error (unit: electrons).
778
779 Also, the values contained in this calibration are all derived
780 from and image and overscan in units of electron as these are
781 the most natural units in which to compute deferred charge.
782 However, this means the the user should supply a reliable set
783 of gains when computing the CTI statistics during ISR.
784
785 Version 1.1 deprecates the USEGAINS attribute and standardizes
786 everything to electron units.
787 Version 1.2 adds the ``signal``, ``serialEper``, ``parallelEper``,
788 ``serialCtiTurnoff``, ``parallelCtiTurnoff``,
789 ``serialCtiTurnoffSamplingErr``, ``parallelCtiTurnoffSamplingErr``
790 attributes.
791 Version 1.3 adds the `inputGain` attribute.
792 """
793 _OBSTYPE = 'CTI'
794 _SCHEMA = 'Deferred Charge'
795 _VERSION = 1.3
796
797 def __init__(self, **kwargs):
798 self.driftScale = {}
799 self.decayTime = {}
800 self.globalCti = {}
801 self.serialTraps = {}
802 self.signals = {}
803 self.inputGain = {}
804 self.serialEper = {}
805 self.parallelEper = {}
810
811 # Check for deprecated kwargs
812 if kwargs.pop("useGains", None) is not None:
813 warnings.warn("useGains is deprecated, and will be removed "
814 "after v28.", FutureWarning)
815
816 super().__init__(**kwargs)
817
818 # Units are always in electron.
819 self.updateMetadata(UNITS='electron')
820
821 self.requiredAttributes.update(['driftScale', 'decayTime', 'globalCti', 'serialTraps',
822 'inputGain', 'signals', 'serialEper', 'parallelEper',
823 'serialCtiTurnoff', 'parallelCtiTurnoff',
824 'serialCtiTurnoffSamplingErr',
825 'parallelCtiTurnoffSamplingErr'])
826
827 def fromDetector(self, detector):
828 """Read metadata parameters from a detector.
829
830 Parameters
831 ----------
832 detector : `lsst.afw.cameraGeom.detector`
833 Input detector with parameters to use.
834
835 Returns
836 -------
837 calib : `lsst.ip.isr.Linearizer`
838 The calibration constructed from the detector.
839 """
840
841 pass
842
843 @classmethod
844 def fromDict(cls, dictionary):
845 """Construct a calibration from a dictionary of properties.
846
847 Parameters
848 ----------
849 dictionary : `dict`
850 Dictionary of properties.
851
852 Returns
853 -------
854 calib : `lsst.ip.isr.CalibType`
855 Constructed calibration.
856
857 Raises
858 ------
859 RuntimeError
860 Raised if the supplied dictionary is for a different
861 calibration.
862 """
863 calib = cls()
864
865 if calib._OBSTYPE != dictionary['metadata']['OBSTYPE']:
866 raise RuntimeError(f"Incorrect CTI supplied. Expected {calib._OBSTYPE}, "
867 f"found {dictionary['metadata']['OBSTYPE']}")
868
869 calib.setMetadata(dictionary['metadata'])
870
871 calib.inputGain = dictionary['inputGain']
872 calib.driftScale = dictionary['driftScale']
873 calib.decayTime = dictionary['decayTime']
874 calib.globalCti = dictionary['globalCti']
875 calib.serialCtiTurnoff = dictionary['serialCtiTurnoff']
876 calib.parallelCtiTurnoff = dictionary['parallelCtiTurnoff']
877 calib.serialCtiTurnoffSamplingErr = dictionary['serialCtiTurnoffSamplingErr']
878 calib.parallelCtiTurnoffSamplingErr = dictionary['parallelCtiTurnoffSamplingErr']
879
880 allAmpNames = dictionary['driftScale'].keys()
881
882 # Some amps might not have a serial trap solution, so
883 # dictionary['serialTraps'].keys() might not be equal
884 # to dictionary['driftScale'].keys()
885 for ampName in dictionary['serialTraps']:
886 ampTraps = dictionary['serialTraps'][ampName]
887 calib.serialTraps[ampName] = SerialTrap(ampTraps['size'], ampTraps['emissionTime'],
888 ampTraps['pixel'], ampTraps['trap_type'],
889 ampTraps['coeffs'])
890
891 for ampName in allAmpNames:
892 calib.signals[ampName] = np.array(dictionary['signals'][ampName], dtype=np.float64)
893 calib.serialEper[ampName] = np.array(dictionary['serialEper'][ampName], dtype=np.float64)
894 calib.parallelEper[ampName] = np.array(dictionary['parallelEper'][ampName], dtype=np.float64)
895
896 calib.updateMetadata()
897 return calib
898
899 def toDict(self):
900 """Return a dictionary containing the calibration properties.
901 The dictionary should be able to be round-tripped through
902 ``fromDict``.
903
904 Returns
905 -------
906 dictionary : `dict`
907 Dictionary of properties.
908 """
909 self.updateMetadata()
910 outDict = {}
911 outDict['metadata'] = self.getMetadata()
912
913 outDict['driftScale'] = self.driftScale
914 outDict['decayTime'] = self.decayTime
915 outDict['globalCti'] = self.globalCti
916 outDict['signals'] = self.signals
917 outDict['inputGain'] = self.inputGain
918 outDict['serialEper'] = self.serialEper
919 outDict['parallelEper'] = self.parallelEper
920 outDict['serialCtiTurnoff'] = self.serialCtiTurnoff
921 outDict['parallelCtiTurnoff'] = self.parallelCtiTurnoff
922 outDict['serialCtiTurnoffSamplingErr'] = self.serialCtiTurnoffSamplingErr
923 outDict['parallelCtiTurnoffSamplingErr'] = self.parallelCtiTurnoffSamplingErr
924
925 outDict['serialTraps'] = {}
926 for ampName in self.serialTraps:
927 ampTrap = {'size': self.serialTraps[ampName].size,
928 'emissionTime': self.serialTraps[ampName].emission_time,
929 'pixel': self.serialTraps[ampName].pixel,
930 'trap_type': self.serialTraps[ampName].trap_type,
931 'coeffs': self.serialTraps[ampName].coeffs}
932 outDict['serialTraps'][ampName] = ampTrap
933
934 return outDict
935
936 @classmethod
937 def fromTable(cls, tableList):
938 """Construct calibration from a list of tables.
939
940 This method uses the ``fromDict`` method to create the
941 calibration, after constructing an appropriate dictionary from
942 the input tables.
943
944 Parameters
945 ----------
946 tableList : `list` [`lsst.afw.table.Table`]
947 List of tables to use to construct the CTI
948 calibration. Two tables are expected in this list, the
949 first containing the per-amplifier CTI parameters, and the
950 second containing the parameters for serial traps.
951
952 Returns
953 -------
954 calib : `lsst.ip.isr.DeferredChargeCalib`
955 The calibration defined in the tables.
956
957 Raises
958 ------
959 ValueError
960 Raised if the trap type or trap coefficients are not
961 defined properly.
962 """
963 ampTable = tableList[0]
964
965 inDict = {}
966 inDict['metadata'] = ampTable.meta
967 calibVersion = inDict['metadata']['CTI_VERSION']
968
969 amps = ampTable['AMPLIFIER']
970 driftScale = ampTable['DRIFT_SCALE']
971 decayTime = ampTable['DECAY_TIME']
972 globalCti = ampTable['GLOBAL_CTI']
973
974 inDict['driftScale'] = {amp: value for amp, value in zip(amps, driftScale)}
975 inDict['decayTime'] = {amp: value for amp, value in zip(amps, decayTime)}
976 inDict['globalCti'] = {amp: value for amp, value in zip(amps, globalCti)}
977
978 # Version check
979 if calibVersion < 1.1:
980 # This version might be in the wrong units (not electron),
981 # and does not contain the gain information to convert
982 # into a new calibration version.
983 raise RuntimeError(f"Using old version of CTI calibration (ver. {calibVersion} < 1.1), "
984 "which is no longer supported.")
985 elif calibVersion < 1.2:
986 inDict['signals'] = {amp: np.array([np.nan]) for amp in amps}
987 inDict['serialEper'] = {amp: np.array([np.nan]) for amp in amps}
988 inDict['parallelEper'] = {amp: np.array([np.nan]) for amp in amps}
989 inDict['serialCtiTurnoff'] = {amp: np.nan for amp in amps}
990 inDict['parallelCtiTurnoff'] = {amp: np.nan for amp in amps}
991 inDict['serialCtiTurnoffSamplingErr'] = {amp: np.nan for amp in amps}
992 inDict['parallelCtiTurnoffSamplingErr'] = {amp: np.nan for amp in amps}
993 else:
994 signals = ampTable['SIGNALS']
995 serialEper = ampTable['SERIAL_EPER']
996 parallelEper = ampTable['PARALLEL_EPER']
997 serialCtiTurnoff = ampTable['SERIAL_CTI_TURNOFF']
998 parallelCtiTurnoff = ampTable['PARALLEL_CTI_TURNOFF']
999 serialCtiTurnoffSamplingErr = ampTable['SERIAL_CTI_TURNOFF_SAMPLING_ERR']
1000 parallelCtiTurnoffSamplingErr = ampTable['PARALLEL_CTI_TURNOFF_SAMPLING_ERR']
1001 inDict['signals'] = {amp: value for amp, value in zip(amps, signals)}
1002 inDict['serialEper'] = {amp: value for amp, value in zip(amps, serialEper)}
1003 inDict['parallelEper'] = {amp: value for amp, value in zip(amps, parallelEper)}
1004 inDict['serialCtiTurnoff'] = {amp: value for amp, value in zip(amps, serialCtiTurnoff)}
1005 inDict['parallelCtiTurnoff'] = {amp: value for amp, value in zip(amps, parallelCtiTurnoff)}
1006 inDict['serialCtiTurnoffSamplingErr'] = {
1007 amp: value for amp, value in zip(amps, serialCtiTurnoffSamplingErr)
1008 }
1009 inDict['parallelCtiTurnoffSamplingErr'] = {
1010 amp: value for amp, value in zip(amps, parallelCtiTurnoffSamplingErr)
1011 }
1012 if calibVersion < 1.3:
1013 inDict['inputGain'] = {amp: np.nan for amp in amps}
1014 else:
1015 inputGain = ampTable['INPUT_GAIN']
1016 inDict['inputGain'] = {amp: value for amp, value in zip(amps, inputGain)}
1017
1018 inDict['serialTraps'] = {}
1019 trapTable = tableList[1]
1020
1021 amps = trapTable['AMPLIFIER']
1022 sizes = trapTable['SIZE']
1023 emissionTimes = trapTable['EMISSION_TIME']
1024 pixels = trapTable['PIXEL']
1025 trap_type = trapTable['TYPE']
1026 coeffs = trapTable['COEFFS']
1027
1028 for index, amp in enumerate(amps):
1029 ampTrap = {}
1030 ampTrap['size'] = sizes[index]
1031 ampTrap['emissionTime'] = emissionTimes[index]
1032 ampTrap['pixel'] = pixels[index]
1033 ampTrap['trap_type'] = trap_type[index]
1034
1035 # Unpad any trailing NaN values: find the continuous array
1036 # of NaNs at the end of the coefficients, and remove them.
1037 inCoeffs = coeffs[index]
1038 breakIndex = 1
1039 nanValues = np.where(np.isnan(inCoeffs))[0]
1040 if nanValues is not None:
1041 coeffLength = len(inCoeffs)
1042 while breakIndex < coeffLength:
1043 if coeffLength - breakIndex in nanValues:
1044 breakIndex += 1
1045 else:
1046 break
1047 breakIndex -= 1 # Remove the fixed offset.
1048 if breakIndex != 0:
1049 outCoeffs = inCoeffs[0: coeffLength - breakIndex]
1050 else:
1051 outCoeffs = inCoeffs
1052 ampTrap['coeffs'] = outCoeffs.tolist()
1053
1054 if ampTrap['trap_type'] == 'linear':
1055 if len(ampTrap['coeffs']) < 1:
1056 raise ValueError("CTI Amplifier %s coefficients for trap has illegal length %d.",
1057 amp, len(ampTrap['coeffs']))
1058 elif ampTrap['trap_type'] == 'logistic':
1059 if len(ampTrap['coeffs']) < 2:
1060 raise ValueError("CTI Amplifier %s coefficients for trap has illegal length %d.",
1061 amp, len(ampTrap['coeffs']))
1062 elif ampTrap['trap_type'] == 'spline':
1063 if len(ampTrap['coeffs']) % 2 != 0:
1064 raise ValueError("CTI Amplifier %s coefficients for trap has illegal length %d.",
1065 amp, len(ampTrap['coeffs']))
1066 else:
1067 raise ValueError('Unknown trap type: %s', ampTrap['trap_type'])
1068
1069 inDict['serialTraps'][amp] = ampTrap
1070
1071 return cls.fromDict(inDict)
1072
1073 def toTable(self):
1074 """Construct a list of tables containing the information in this
1075 calibration.
1076
1077 The list of tables should create an identical calibration
1078 after being passed to this class's fromTable method.
1079
1080 Returns
1081 -------
1082 tableList : `list` [`lsst.afw.table.Table`]
1083 List of tables containing the crosstalk calibration
1084 information. Two tables are generated for this list, the
1085 first containing the per-amplifier CTI parameters, and the
1086 second containing the parameters for serial traps.
1087 """
1088 tableList = []
1089 self.updateMetadata()
1090
1091 ampList = []
1092 driftScale = []
1093 decayTime = []
1094 globalCti = []
1095 signals = []
1096 inputGain = []
1097 serialEper = []
1098 parallelEper = []
1099 serialCtiTurnoff = []
1100 parallelCtiTurnoff = []
1101 serialCtiTurnoffSamplingErr = []
1102 parallelCtiTurnoffSamplingErr = []
1103
1104 for amp in self.driftScale.keys():
1105 ampList.append(amp)
1106 driftScale.append(self.driftScale[amp])
1107 decayTime.append(self.decayTime[amp])
1108 globalCti.append(self.globalCti[amp])
1109 signals.append(self.signals[amp])
1110 inputGain.append(self.inputGain[amp])
1111 serialEper.append(self.serialEper[amp])
1112 parallelEper.append(self.parallelEper[amp])
1113 serialCtiTurnoff.append(self.serialCtiTurnoff[amp])
1114 parallelCtiTurnoff.append(self.parallelCtiTurnoff[amp])
1115 serialCtiTurnoffSamplingErr.append(
1117 )
1118 parallelCtiTurnoffSamplingErr.append(
1120 )
1121
1122 ampTable = Table({
1123 'AMPLIFIER': ampList,
1124 'DRIFT_SCALE': driftScale,
1125 'DECAY_TIME': decayTime,
1126 'GLOBAL_CTI': globalCti,
1127 'SIGNALS': signals,
1128 'INPUT_GAIN': inputGain,
1129 'SERIAL_EPER': serialEper,
1130 'PARALLEL_EPER': parallelEper,
1131 'SERIAL_CTI_TURNOFF': serialCtiTurnoff,
1132 'PARALLEL_CTI_TURNOFF': parallelCtiTurnoff,
1133 'SERIAL_CTI_TURNOFF_SAMPLING_ERR': serialCtiTurnoffSamplingErr,
1134 'PARALLEL_CTI_TURNOFF_SAMPLING_ERR': parallelCtiTurnoffSamplingErr,
1135 })
1136
1137 ampTable.meta = self.getMetadata().toDict()
1138 tableList.append(ampTable)
1139
1140 ampList = []
1141 sizeList = []
1142 timeList = []
1143 pixelList = []
1144 typeList = []
1145 coeffList = []
1146
1147 # Get maximum coeff length
1148 maxCoeffLength = 0
1149 for trap in self.serialTraps.values():
1150 maxCoeffLength = np.maximum(maxCoeffLength, len(trap.coeffs))
1151
1152 # Pack and pad the end of the coefficients with NaN values.
1153 for amp, trap in self.serialTraps.items():
1154 ampList.append(amp)
1155 sizeList.append(trap.size)
1156 timeList.append(trap.emission_time)
1157 pixelList.append(trap.pixel)
1158 typeList.append(trap.trap_type)
1159
1160 coeffs = trap.coeffs
1161 if len(coeffs) != maxCoeffLength:
1162 coeffs = np.pad(coeffs, (0, maxCoeffLength - len(coeffs)),
1163 constant_values=np.nan).tolist()
1164 coeffList.append(coeffs)
1165
1166 trapTable = Table({'AMPLIFIER': ampList,
1167 'SIZE': sizeList,
1168 'EMISSION_TIME': timeList,
1169 'PIXEL': pixelList,
1170 'TYPE': typeList,
1171 'COEFFS': coeffList})
1172
1173 tableList.append(trapTable)
1174
1175 return tableList
1176
1177
1179 """Settings for deferred charge correction.
1180 """
1181 nPixelOffsetCorrection = Field(
1182 dtype=int,
1183 doc="Number of prior pixels to use for local offset correction.",
1184 default=15,
1185 )
1186 nPixelTrapCorrection = Field(
1187 dtype=int,
1188 doc="Number of prior pixels to use for trap correction.",
1189 default=6,
1190 )
1191 zeroUnusedPixels = Field(
1192 dtype=bool,
1193 doc="If true, set serial prescan and parallel overscan to zero before correction.",
1194 default=True,
1195 )
1196
1197
1199 """Task to correct an exposure for charge transfer inefficiency.
1200
1201 This uses the methods described by Snyder et al. 2021, Journal of
1202 Astronimcal Telescopes, Instruments, and Systems, 7,
1203 048002. doi:10.1117/1.JATIS.7.4.048002 (Snyder+21).
1204 """
1205 ConfigClass = DeferredChargeConfig
1206 _DefaultName = 'isrDeferredCharge'
1207
1208 def run(self, exposure, ctiCalib, gains=None):
1209 """Correct deferred charge/CTI issues.
1210
1211 Parameters
1212 ----------
1213 exposure : `lsst.afw.image.Exposure`
1214 Exposure to correct the deferred charge on.
1215 ctiCalib : `lsst.ip.isr.DeferredChargeCalib`
1216 Calibration object containing the charge transfer
1217 inefficiency model.
1218 gains : `dict` [`str`, `float`]
1219 A dictionary, keyed by amplifier name, of the gains to
1220 use. If gains is None, the nominal gains in the amplifier
1221 object are used.
1222
1223 Returns
1224 -------
1225 exposure : `lsst.afw.image.Exposure`
1226 The corrected exposure.
1227
1228 Notes
1229 -------
1230 This task will read the exposure metadata and determine if
1231 applying gains if necessary. The correction takes place in
1232 units of electrons. If bootstrapping, the gains used
1233 will just be 1.0. and the input/output units will stay in
1234 adu. If the input image is in adu, the output image will be
1235 in units of electrons. If the input image is in electron,
1236 the output image will be in electron.
1237 """
1238 image = exposure.getMaskedImage().image
1239 detector = exposure.getDetector()
1240
1241 # Get the image and overscan units.
1242 imageUnits = exposure.getMetadata().get("LSST ISR UNITS")
1243
1244 # The deferred charge correction assumes that everything is in
1245 # electron units. Make it so:
1246 applyGains = False
1247 if imageUnits == "adu":
1248 applyGains = True
1249
1250 # If we need to convert the image to electrons, check that gains
1251 # were supplied. CTI should not be solved or corrected without
1252 # supplied gains.
1253 if applyGains and gains is None:
1254 raise RuntimeError("No gains supplied for deferred charge correction.")
1255
1256 with gainContext(exposure, image, apply=applyGains, gains=gains, isTrimmed=False):
1257 # Both the image and the overscan are in electron units.
1258 for amp in detector.getAmplifiers():
1259 ampName = amp.getName()
1260
1261 ampImage = image[amp.getRawBBox()]
1262 if self.config.zeroUnusedPixels:
1263 # We don't apply overscan subtraction, so zero these
1264 # out for now.
1265 ampImage[amp.getRawParallelOverscanBBox()].array[:, :] = 0.0
1266 ampImage[amp.getRawSerialPrescanBBox()].array[:, :] = 0.0
1267
1268 # The algorithm expects that the readout corner is in
1269 # the lower left corner. Flip it to be so:
1270 ampData = self.flipData(ampImage.array, amp)
1271
1272 if ctiCalib.driftScale[ampName] > 0.0:
1273 correctedAmpData = self.local_offset_inverse(ampData,
1274 ctiCalib.driftScale[ampName],
1275 ctiCalib.decayTime[ampName],
1276 self.config.nPixelOffsetCorrection)
1277 else:
1278 correctedAmpData = ampData.copy()
1279
1280 correctedAmpData = self.local_trap_inverse(correctedAmpData,
1281 ctiCalib.serialTraps[ampName],
1282 ctiCalib.globalCti[ampName],
1283 self.config.nPixelTrapCorrection)
1284
1285 # Undo flips here. The method is symmetric.
1286 correctedAmpData = self.flipData(correctedAmpData, amp)
1287 image[amp.getRawBBox()].array[:, :] = correctedAmpData[:, :]
1288
1289 return exposure
1290
1291 @staticmethod
1292 def flipData(ampData, amp):
1293 """Flip data array such that readout corner is at lower-left.
1294
1295 Parameters
1296 ----------
1297 ampData : `numpy.ndarray`, (nx, ny)
1298 Image data to flip.
1299 amp : `lsst.afw.cameraGeom.Amplifier`
1300 Amplifier to get readout corner information.
1301
1302 Returns
1303 -------
1304 ampData : `numpy.ndarray`, (nx, ny)
1305 Flipped image data.
1306 """
1307 X_FLIP = {ReadoutCorner.LL: False,
1308 ReadoutCorner.LR: True,
1309 ReadoutCorner.UL: False,
1310 ReadoutCorner.UR: True}
1311 Y_FLIP = {ReadoutCorner.LL: False,
1312 ReadoutCorner.LR: False,
1313 ReadoutCorner.UL: True,
1314 ReadoutCorner.UR: True}
1315
1316 if X_FLIP[amp.getReadoutCorner()]:
1317 ampData = np.fliplr(ampData)
1318 if Y_FLIP[amp.getReadoutCorner()]:
1319 ampData = np.flipud(ampData)
1320
1321 return ampData
1322
1323 @staticmethod
1324 def local_offset_inverse(inputArr, drift_scale, decay_time, num_previous_pixels=15):
1325 r"""Remove CTI effects from local offsets.
1326
1327 This implements equation 10 of Snyder+21. For an image with
1328 CTI, s'(m, n), the correction factor is equal to the maximum
1329 value of the set of:
1330
1331 .. code-block::
1332
1333 {A_L s'(m, n - j) exp(-j t / \tau_L)}_j=0^jmax
1334
1335 Parameters
1336 ----------
1337 inputArr : `numpy.ndarray`, (nx, ny)
1338 Input image data to correct.
1339 drift_scale : `float`
1340 Drift scale (Snyder+21 A_L value) to use in correction.
1341 decay_time : `float`
1342 Decay time (Snyder+21 \tau_L) of the correction.
1343 num_previous_pixels : `int`, optional
1344 Number of previous pixels to use for correction. As the
1345 CTI has an exponential decay, this essentially truncates
1346 the correction where that decay scales the input charge to
1347 near zero.
1348
1349 Returns
1350 -------
1351 outputArr : `numpy.ndarray`, (nx, ny)
1352 Corrected image data.
1353 """
1354 r = np.exp(-1/decay_time)
1355 Ny, Nx = inputArr.shape
1356
1357 # j = 0 term:
1358 offset = np.zeros((num_previous_pixels, Ny, Nx))
1359 offset[0, :, :] = drift_scale*np.maximum(0, inputArr)
1360
1361 # j = 1..jmax terms:
1362 for n in range(1, num_previous_pixels):
1363 offset[n, :, n:] = drift_scale*np.maximum(0, inputArr[:, :-n])*(r**n)
1364
1365 Linv = np.amax(offset, axis=0)
1366 outputArr = inputArr - Linv
1367
1368 return outputArr
1369
1370 @staticmethod
1371 def local_trap_inverse(inputArr, trap, global_cti=0.0, num_previous_pixels=6):
1372 r"""Apply localized trapping inverse operator to pixel signals.
1373
1374 This implements equation 13 of Snyder+21. For an image with
1375 CTI, s'(m, n), the correction factor is equal to the maximum
1376 value of the set of:
1377
1378 .. code-block::
1379
1380 {A_L s'(m, n - j) exp(-j t / \tau_L)}_j=0^jmax
1381
1382 Parameters
1383 ----------
1384 inputArr : `numpy.ndarray`, (nx, ny)
1385 Input image data to correct.
1386 trap : `lsst.ip.isr.SerialTrap`
1387 Serial trap describing the capture and release of charge.
1388 global_cti: `float`
1389 Mean charge transfer inefficiency, b from Snyder+21.
1390 num_previous_pixels : `int`, optional
1391 Number of previous pixels to use for correction.
1392
1393 Returns
1394 -------
1395 outputArr : `numpy.ndarray`, (nx, ny)
1396 Corrected image data.
1397
1398 """
1399 Ny, Nx = inputArr.shape
1400 a = 1 - global_cti
1401 r = np.exp(-1/trap.emission_time)
1402
1403 # Estimate trap occupancies during readout
1404 trap_occupancy = np.zeros((num_previous_pixels, Ny, Nx))
1405 for n in range(num_previous_pixels):
1406 trap_occupancy[n, :, n+1:] = trap.capture(np.maximum(0, inputArr))[:, :-(n+1)]*(r**n)
1407 trap_occupancy = np.amax(trap_occupancy, axis=0)
1408
1409 # Estimate captured charge
1410 C = trap.capture(np.maximum(0, inputArr)) - trap_occupancy*r
1411 C[C < 0] = 0.
1412
1413 # Estimate released charge
1414 R = np.zeros(inputArr.shape)
1415 R[:, 1:] = trap_occupancy[:, 1:]*(1-r)
1416 T = R - C
1417
1418 outputArr = inputArr - a*T
1419
1420 return outputArr
fromDict(cls, dictionary, **kwargs)
Definition calibType.py:604
updateMetadata(self, camera=None, detector=None, filterName=None, setCalibId=False, setCalibInfo=False, setDate=False, **kwargs)
Definition calibType.py:210
local_trap_inverse(inputArr, trap, global_cti=0.0, num_previous_pixels=6)
local_offset_inverse(inputArr, drift_scale, decay_time, num_previous_pixels=15)
run(self, exposure, ctiCalib, gains=None)
__init__(self, gain, scale, decay_time, noise=0.0, offset=0.0)
negative_loglikelihood(self, params, signal, data, error, *args, **kwargs)
loglikelihood(self, params, signal, data, error, *args, **kwargs)
rms_error(self, params, signal, data, error, *args, **kwargs)
difference(self, params, signal, data, error, *args, **kwargs)
model_results(params, signal, num_transfers, start=1, stop=10)
readout(self, serial_overscan_width=10, parallel_overscan_width=0)
__init__(self, imarr, prescan_width, output_amplifier, cti=0.0, traps=None)
__init__(self, size, emission_time, pixel, trap_type, coeffs)
initialize(self, ny, nx, prescan_width)
model_results(params, signal, num_transfers, start=1, stop=10)
model_results(params, signal, num_transfers, amp, start=1, stop=10, trap_type=None)
gainContext(exp, image, apply, gains=None, invert=False, isTrimmed=True)