22__all__ = (
'DeferredChargeConfig',
29 'FloatingOutputAmplifier',
30 'DeferredChargeCalib',
36from astropy.table
import Table
41from .isrFunctions
import gainContext
42from .calibType
import IsrCalib
44import scipy.interpolate
as interp
48 """Represents a serial register trap.
53 Size of the charge trap, in electrons.
54 emission_time : `float`
55 Trap emission time constant, in inverse transfers.
57 Serial pixel location of the trap, including the prescan.
59 Type of trap capture to use. Should be one of ``linear``,
60 ``logistic``, or ``spline``.
61 coeffs : `list` [`float`]
62 Coefficients for the capture process. Linear traps need one
63 coefficient, logistic traps need two, and spline based traps
64 need to have an even number of coefficients that can be split
65 into their spline locations and values.
70 Raised if the specified parameters are out of expected range.
73 def __init__(self, size, emission_time, pixel, trap_type, coeffs):
75 raise ValueError(
'Trap size must be greater than or equal to 0.')
78 if emission_time <= 0.0:
79 raise ValueError(
'Emission time must be greater than 0.')
80 if np.isnan(emission_time):
81 raise ValueError(
'Emission time must be real-valued, not NaN')
84 if int(pixel) != pixel:
85 raise ValueError(
'Fraction value for pixel not allowed.')
91 if self.
trap_type not in (
'linear',
'logistic',
'spline'):
92 raise ValueError(
'Unknown trap type: %s', self.
trap_type)
97 centers, values = np.split(np.array(self.
coeffs, dtype=np.float64), 2)
99 values = values[~np.isnan(centers)]
100 centers = centers[~np.isnan(centers)]
101 centers = centers[~np.isnan(values)]
102 values = values[~np.isnan(values)]
107 fill_value=(values[0], values[-1]),
117 if self.
size != other.size:
121 if self.
pixel != other.pixel:
125 if self.
coeffs != other.coeffs:
138 """Initialize trapping arrays for simulated readout.
143 Number of rows to simulate.
145 Number of columns to simulate.
146 prescan_width : `int`
147 Additional transfers due to prescan.
152 Raised if the trap falls outside of the image.
154 if self.
pixel > nx+prescan_width:
155 raise ValueError(
'Trap location {0} must be less than {1}'.format(self.
pixel,
158 self.
_trap_array = np.zeros((ny, nx+prescan_width))
163 """Release charge through exponential decay.
167 released_charge : `float`
173 return released_charge
176 """Perform charge capture using a logistic function.
180 free_charge : `float`
181 Charge available to be trapped.
185 captured_charge : `float`
186 Amount of charge actually trapped.
192 return captured_charge
195 """Trap capture function.
199 pixel_signals : `list` [`float`]
204 captured_charge : `list` [`float`]
205 Amount of charge captured from each pixel.
210 Raised if the trap type is invalid.
214 return np.minimum(self.
size, pixel_signals*scaling)
217 return self.
size/(1.+np.exp(-k*(pixel_signals-f0)))
219 return self.
interp(pixel_signals)
221 raise RuntimeError(f
"Invalid trap capture type: {self.trap_type}.")
225 """Base class for handling model/data fit comparisons.
226 This handles all of the methods needed for the lmfit Minimizer to
232 """Generate a realization of the overscan model, using the specified
233 fit parameters and input signal.
237 params : `lmfit.Parameters`
238 Object containing the model parameters.
239 signal : `np.ndarray`, (nMeasurements)
240 Array of image means.
241 num_transfers : `int`
242 Number of serial transfers that the charge undergoes.
243 start : `int`, optional
244 First overscan column to fit. This number includes the
245 last imaging column, and needs to be adjusted by one when
246 using the overscan bounding box.
247 stop : `int`, optional
248 Last overscan column to fit. This number includes the
249 last imaging column, and needs to be adjusted by one when
250 using the overscan bounding box.
254 results : `np.ndarray`, (nMeasurements, nCols)
257 raise NotImplementedError(
"Subclasses must implement the model calculation.")
260 """Calculate log likelihood of the model.
264 params : `lmfit.Parameters`
265 Object containing the model parameters.
266 signal : `np.ndarray`, (nMeasurements)
267 Array of image means.
268 data : `np.ndarray`, (nMeasurements, nCols)
269 Array of overscan column means from each measurement.
273 Additional position arguments.
275 Additional keyword arguments.
280 The log-likelihood of the observed data given the model
283 model_results = self.
model_results(params, signal, *args, **kwargs)
285 inv_sigma2 = 1.0/(error**2.0)
286 diff = model_results - data
288 return -0.5*(np.sum(inv_sigma2*(diff)**2.))
291 """Calculate negative log likelihood of the model.
295 params : `lmfit.Parameters`
296 Object containing the model parameters.
297 signal : `np.ndarray`, (nMeasurements)
298 Array of image means.
299 data : `np.ndarray`, (nMeasurements, nCols)
300 Array of overscan column means from each measurement.
304 Additional position arguments.
306 Additional keyword arguments.
310 negativelogL : `float`
311 The negative log-likelihood of the observed data given the
314 ll = self.
loglikelihood(params, signal, data, error, *args, **kwargs)
318 def rms_error(self, params, signal, data, error, *args, **kwargs):
319 """Calculate RMS error between model and data.
323 params : `lmfit.Parameters`
324 Object containing the model parameters.
325 signal : `np.ndarray`, (nMeasurements)
326 Array of image means.
327 data : `np.ndarray`, (nMeasurements, nCols)
328 Array of overscan column means from each measurement.
332 Additional position arguments.
334 Additional keyword arguments.
339 The rms error between the model and input data.
341 model_results = self.
model_results(params, signal, *args, **kwargs)
343 diff = model_results - data
344 rms = np.sqrt(np.mean(np.square(diff)))
348 def difference(self, params, signal, data, error, *args, **kwargs):
349 """Calculate the flattened difference array between model and data.
353 params : `lmfit.Parameters`
354 Object containing the model parameters.
355 signal : `np.ndarray`, (nMeasurements)
356 Array of image means.
357 data : `np.ndarray`, (nMeasurements, nCols)
358 Array of overscan column means from each measurement.
362 Additional position arguments.
364 Additional keyword arguments.
368 difference : `np.ndarray`, (nMeasurements*nCols)
369 The rms error between the model and input data.
371 model_results = self.
model_results(params, signal, *args, **kwargs)
372 diff = (model_results-data).flatten()
378 """Simple analytic overscan model."""
382 """Generate a realization of the overscan model, using the specified
383 fit parameters and input signal.
387 params : `lmfit.Parameters`
388 Object containing the model parameters.
389 signal : `np.ndarray`, (nMeasurements)
390 Array of image means.
391 num_transfers : `int`
392 Number of serial transfers that the charge undergoes.
393 start : `int`, optional
394 First overscan column to fit. This number includes the
395 last imaging column, and needs to be adjusted by one when
396 using the overscan bounding box.
397 stop : `int`, optional
398 Last overscan column to fit. This number includes the
399 last imaging column, and needs to be adjusted by one when
400 using the overscan bounding box.
404 res : `np.ndarray`, (nMeasurements, nCols)
407 v = params.valuesdict()
408 v[
'cti'] = 10**v[
'ctiexp']
414 x = np.arange(start, stop+1)
415 res = np.zeros((signal.shape[0], x.shape[0]))
417 for i, s
in enumerate(signal):
425 res[i, :] = (np.minimum(v[
'trapsize'], s*v[
'scaling'])
426 * (np.exp(1/v[
'emissiontime']) - 1.0)
427 * np.exp(-x/v[
'emissiontime'])
428 + s*num_transfers*v[
'cti']**x
429 + v[
'driftscale']*s*np.exp(-x/float(v[
'decaytime'])))
435 """Simulated overscan model."""
438 def model_results(params, signal, num_transfers, amp, start=1, stop=10, trap_type=None):
439 """Generate a realization of the overscan model, using the specified
440 fit parameters and input signal.
444 params : `lmfit.Parameters`
445 Object containing the model parameters.
446 signal : `np.ndarray`, (nMeasurements)
447 Array of image means.
448 num_transfers : `int`
449 Number of serial transfers that the charge undergoes.
450 amp : `lsst.afw.cameraGeom.Amplifier`
451 Amplifier to use for geometry information.
452 start : `int`, optional
453 First overscan column to fit. This number includes the
454 last imaging column, and needs to be adjusted by one when
455 using the overscan bounding box.
456 stop : `int`, optional
457 Last overscan column to fit. This number includes the
458 last imaging column, and needs to be adjusted by one when
459 using the overscan bounding box.
460 trap_type : `str`, optional
461 Type of trap model to use.
465 results : `np.ndarray`, (nMeasurements, nCols)
468 v = params.valuesdict()
478 v[
'cti'] = 10**v[
'ctiexp']
481 if trap_type
is None:
483 elif trap_type ==
'linear':
484 trap =
SerialTrap(v[
'trapsize'], v[
'emissiontime'], 1,
'linear',
486 elif trap_type ==
'logistic':
487 trap =
SerialTrap(v[
'trapsize'], v[
'emissiontime'], 1,
'logistic',
490 raise ValueError(
'Trap type must be linear or logistic or None')
493 imarr = np.zeros((signal.shape[0], amp.getRawDataBBox().getWidth()))
494 ramp =
SegmentSimulator(imarr, amp.getRawSerialPrescanBBox().getWidth(), output_amplifier,
495 cti=v[
'cti'], traps=trap)
496 ramp.ramp_exp(signal)
497 model_results = ramp.readout(serial_overscan_width=amp.getRawSerialOverscanBBox().getWidth(),
498 parallel_overscan_width=0)
500 ncols = amp.getRawSerialPrescanBBox().getWidth() + amp.getRawDataBBox().getWidth()
502 return model_results[:, ncols+start-1:ncols+stop]
506 """Controls the creation of simulated segment images.
510 imarr : `np.ndarray` (nx, ny)
512 prescan_width : `int`
513 Number of serial prescan columns.
514 output_amplifier : `lsst.cp.pipe.FloatingOutputAmplifier`
515 An object holding some deferred charge parameters.
518 traps : `list` [`lsst.ip.isr.SerialTrap`]
519 Serial traps to simulate.
522 def __init__(self, imarr, prescan_width, output_amplifier, cti=0.0, traps=None):
528 self.
segarr[:, prescan_width:] = imarr
532 if isinstance(cti, np.ndarray):
533 raise ValueError(
"cti must be single value, not an array.")
538 if traps
is not None:
539 if not isinstance(traps, list):
545 """Add a trap to the serial register.
549 serial_trap : `lsst.ip.isr.SerialTrap`
554 except AttributeError:
559 """Simulate an image with varying flux illumination per row.
561 This method simulates a segment image where the signal level
562 increases along the horizontal direction, according to the
563 provided list of signal levels.
567 signal_list : `list` [`float`]
568 List of signal levels.
573 Raised if the length of the signal list does not equal the
576 if len(signal_list) != self.
ny:
577 raise ValueError(
"Signal list does not match row count.")
579 ramp = np.tile(signal_list, (self.
nx, 1)).T
582 def readout(self, serial_overscan_width=10, parallel_overscan_width=0):
583 """Simulate serial readout of the segment image.
585 This method performs the serial readout of a segment image
586 given the appropriate SerialRegister object and the properties
587 of the ReadoutAmplifier. Additional arguments can be provided
588 to account for the number of desired overscan transfers. The
589 result is a simulated final segment image, in ADU.
593 serial_overscan_width : `int`, optional
594 Number of serial overscan columns.
595 parallel_overscan_width : `int`, optional
596 Number of parallel overscan rows.
600 result : `np.ndarray` (nx, ny)
601 Simulated image, including serial prescan, serial
602 overscan, and parallel overscan regions. Result in electrons.
605 iy = int(self.
ny + parallel_overscan_width)
608 image = np.random.default_rng().normal(
614 free_charge = copy.deepcopy(self.
segarr)
620 offset = np.zeros(self.
ny)
630 captured_charge = trap.trap_charge(free_charge)
631 free_charge -= captured_charge
634 transferred_charge = free_charge*cte
635 deferred_charge = free_charge*cti
639 transferred_charge[:, 0])
640 image[:iy-parallel_overscan_width, i] += transferred_charge[:, 0] + offset
642 free_charge = np.pad(transferred_charge, ((0, 0), (0, 1)),
643 mode=
'constant')[:, 1:] + deferred_charge
648 released_charge = trap.release_charge()
649 free_charge += released_charge
655 """Object representing the readout amplifier of a single channel.
660 Gain of the amplifier. Currently not used.
662 Drift scale for the amplifier.
664 Decay time for the bias drift.
665 noise : `float`, optional
666 Amplifier read noise.
667 offset : `float`, optional
671 def __init__(self, gain, scale, decay_time, noise=0.0, offset=0.0):
680 """Calculate local offset hysteresis.
684 old : `np.ndarray`, (,)
686 signal : `np.ndarray`, (,)
687 Current column measurements.
690 offset : `np.ndarray`
693 new = self.
scale*signal
698 """Update parameter values, if within acceptable values.
703 Drift scale for the amplifier.
705 Decay time for the bias drift.
710 Raised if the input parameters are out of range.
713 raise ValueError(
"Scale must be greater than or equal to 0.")
715 raise ValueError(
"Scale must be real-valued number, not NaN.")
717 if decay_time <= 0.0:
718 raise ValueError(
"Decay time must be greater than 0.")
719 if np.isnan(decay_time):
720 raise ValueError(
"Decay time must be real-valued number, not NaN.")
725 r"""Calibration containing deferred charge/CTI parameters.
727 This includes, parameters from Snyder+2021 and exstimates of
728 the serial and parallel CTI using the extended pixel edge
729 response (EPER) method (also defined in Snyder+2021).
734 Additional parameters to pass to parent constructor.
738 The charge transfer inefficiency attributes stored are:
740 driftScale : `dict` [`str`, `float`]
741 A dictionary, keyed by amplifier name, of the local electronic
742 offset drift scale parameter, A_L in Snyder+2021.
743 decayTime : `dict` [`str`, `float`]
744 A dictionary, keyed by amplifier name, of the local electronic
745 offset decay time, \tau_L in Snyder+2021.
746 globalCti : `dict` [`str`, `float`]
747 A dictionary, keyed by amplifier name, of the mean global CTI
748 paramter, b in Snyder+2021.
749 serialTraps : `dict` [`str`, `lsst.ip.isr.SerialTrap`]
750 A dictionary, keyed by amplifier name, containing a single
751 serial trap for each amplifier.
752 signals : `dict` [`str`, `np.ndarray`]
753 A dictionary, keyed by amplifier name, of the mean signal
754 level for each input measurement.
755 inputGain : `dict` [`str`, `float`]
756 A dictionary, keyed by amplifier name of the input gain used
757 to calculate the overscan statistics and produce this calib.
758 serialEper : `dict` [`str`, `np.ndarray`, `float`]
759 A dictionary, keyed by amplifier name, of the serial EPER
760 estimator of serial CTI, given in a list for each input
762 parallelEper : `dict` [`str`, `np.ndarray`, `float`]
763 A dictionary, keyed by amplifier name, of the parallel
764 EPER estimator of parallel CTI, given in a list for each
766 serialCtiTurnoff : `dict` [`str`, `float`]
767 A dictionary, keyed by amplifier name, of the serial CTI
768 turnoff (unit: electrons).
769 parallelCtiTurnoff : `dict` [`str`, `float`]
770 A dictionary, keyed by amplifier name, of the parallel CTI
771 turnoff (unit: electrons).
772 serialCtiTurnoffSamplingErr : `dict` [`str`, `float`]
773 A dictionary, keyed by amplifier name, of the serial CTI
774 turnoff sampling error (unit: electrons).
775 parallelCtiTurnoffSamplingErr : `dict` [`str`, `float`]
776 A dictionary, keyed by amplifier name, of the parallel CTI
777 turnoff sampling error (unit: electrons).
779 Also, the values contained in this calibration are all derived
780 from and image and overscan in units of electron as these are
781 the most natural units in which to compute deferred charge.
782 However, this means the the user should supply a reliable set
783 of gains when computing the CTI statistics during ISR.
785 Version 1.1 deprecates the USEGAINS attribute and standardizes
786 everything to electron units.
787 Version 1.2 adds the ``signal``, ``serialEper``, ``parallelEper``,
788 ``serialCtiTurnoff``, ``parallelCtiTurnoff``,
789 ``serialCtiTurnoffSamplingErr``, ``parallelCtiTurnoffSamplingErr``
791 Version 1.3 adds the `inputGain` attribute.
794 _SCHEMA =
'Deferred Charge'
812 if kwargs.pop(
"useGains",
None)
is not None:
813 warnings.warn(
"useGains is deprecated, and will be removed "
814 "after v28.", FutureWarning)
821 self.
requiredAttributes.update([
'driftScale',
'decayTime',
'globalCti',
'serialTraps',
822 'inputGain',
'signals',
'serialEper',
'parallelEper',
823 'serialCtiTurnoff',
'parallelCtiTurnoff',
824 'serialCtiTurnoffSamplingErr',
825 'parallelCtiTurnoffSamplingErr'])
828 """Read metadata parameters from a detector.
832 detector : `lsst.afw.cameraGeom.detector`
833 Input detector with parameters to use.
837 calib : `lsst.ip.isr.Linearizer`
838 The calibration constructed from the detector.
845 """Construct a calibration from a dictionary of properties.
850 Dictionary of properties.
854 calib : `lsst.ip.isr.CalibType`
855 Constructed calibration.
860 Raised if the supplied dictionary is for a different
865 if calib._OBSTYPE != dictionary[
'metadata'][
'OBSTYPE']:
866 raise RuntimeError(f
"Incorrect CTI supplied. Expected {calib._OBSTYPE}, "
867 f
"found {dictionary['metadata']['OBSTYPE']}")
869 calib.setMetadata(dictionary[
'metadata'])
871 calib.inputGain = dictionary[
'inputGain']
872 calib.driftScale = dictionary[
'driftScale']
873 calib.decayTime = dictionary[
'decayTime']
874 calib.globalCti = dictionary[
'globalCti']
875 calib.serialCtiTurnoff = dictionary[
'serialCtiTurnoff']
876 calib.parallelCtiTurnoff = dictionary[
'parallelCtiTurnoff']
877 calib.serialCtiTurnoffSamplingErr = dictionary[
'serialCtiTurnoffSamplingErr']
878 calib.parallelCtiTurnoffSamplingErr = dictionary[
'parallelCtiTurnoffSamplingErr']
880 allAmpNames = dictionary[
'driftScale'].keys()
885 for ampName
in dictionary[
'serialTraps']:
886 ampTraps = dictionary[
'serialTraps'][ampName]
887 calib.serialTraps[ampName] =
SerialTrap(ampTraps[
'size'], ampTraps[
'emissionTime'],
888 ampTraps[
'pixel'], ampTraps[
'trap_type'],
891 for ampName
in allAmpNames:
892 calib.signals[ampName] = np.array(dictionary[
'signals'][ampName], dtype=np.float64)
893 calib.serialEper[ampName] = np.array(dictionary[
'serialEper'][ampName], dtype=np.float64)
894 calib.parallelEper[ampName] = np.array(dictionary[
'parallelEper'][ampName], dtype=np.float64)
896 calib.updateMetadata()
900 """Return a dictionary containing the calibration properties.
901 The dictionary should be able to be round-tripped through
907 Dictionary of properties.
916 outDict[
'signals'] = self.
signals
925 outDict[
'serialTraps'] = {}
928 'emissionTime': self.
serialTraps[ampName].emission_time,
932 outDict[
'serialTraps'][ampName] = ampTrap
938 """Construct calibration from a list of tables.
940 This method uses the ``fromDict`` method to create the
941 calibration, after constructing an appropriate dictionary from
946 tableList : `list` [`lsst.afw.table.Table`]
947 List of tables to use to construct the CTI
948 calibration. Two tables are expected in this list, the
949 first containing the per-amplifier CTI parameters, and the
950 second containing the parameters for serial traps.
954 calib : `lsst.ip.isr.DeferredChargeCalib`
955 The calibration defined in the tables.
960 Raised if the trap type or trap coefficients are not
963 ampTable = tableList[0]
966 inDict[
'metadata'] = ampTable.meta
967 calibVersion = inDict[
'metadata'][
'CTI_VERSION']
969 amps = ampTable[
'AMPLIFIER']
970 driftScale = ampTable[
'DRIFT_SCALE']
971 decayTime = ampTable[
'DECAY_TIME']
972 globalCti = ampTable[
'GLOBAL_CTI']
974 inDict[
'driftScale'] = {amp: value
for amp, value
in zip(amps, driftScale)}
975 inDict[
'decayTime'] = {amp: value
for amp, value
in zip(amps, decayTime)}
976 inDict[
'globalCti'] = {amp: value
for amp, value
in zip(amps, globalCti)}
979 if calibVersion < 1.1:
983 raise RuntimeError(f
"Using old version of CTI calibration (ver. {calibVersion} < 1.1), "
984 "which is no longer supported.")
985 elif calibVersion < 1.2:
986 inDict[
'signals'] = {amp: np.array([np.nan])
for amp
in amps}
987 inDict[
'serialEper'] = {amp: np.array([np.nan])
for amp
in amps}
988 inDict[
'parallelEper'] = {amp: np.array([np.nan])
for amp
in amps}
989 inDict[
'serialCtiTurnoff'] = {amp: np.nan
for amp
in amps}
990 inDict[
'parallelCtiTurnoff'] = {amp: np.nan
for amp
in amps}
991 inDict[
'serialCtiTurnoffSamplingErr'] = {amp: np.nan
for amp
in amps}
992 inDict[
'parallelCtiTurnoffSamplingErr'] = {amp: np.nan
for amp
in amps}
994 signals = ampTable[
'SIGNALS']
995 serialEper = ampTable[
'SERIAL_EPER']
996 parallelEper = ampTable[
'PARALLEL_EPER']
997 serialCtiTurnoff = ampTable[
'SERIAL_CTI_TURNOFF']
998 parallelCtiTurnoff = ampTable[
'PARALLEL_CTI_TURNOFF']
999 serialCtiTurnoffSamplingErr = ampTable[
'SERIAL_CTI_TURNOFF_SAMPLING_ERR']
1000 parallelCtiTurnoffSamplingErr = ampTable[
'PARALLEL_CTI_TURNOFF_SAMPLING_ERR']
1001 inDict[
'signals'] = {amp: value
for amp, value
in zip(amps, signals)}
1002 inDict[
'serialEper'] = {amp: value
for amp, value
in zip(amps, serialEper)}
1003 inDict[
'parallelEper'] = {amp: value
for amp, value
in zip(amps, parallelEper)}
1004 inDict[
'serialCtiTurnoff'] = {amp: value
for amp, value
in zip(amps, serialCtiTurnoff)}
1005 inDict[
'parallelCtiTurnoff'] = {amp: value
for amp, value
in zip(amps, parallelCtiTurnoff)}
1006 inDict[
'serialCtiTurnoffSamplingErr'] = {
1007 amp: value
for amp, value
in zip(amps, serialCtiTurnoffSamplingErr)
1009 inDict[
'parallelCtiTurnoffSamplingErr'] = {
1010 amp: value
for amp, value
in zip(amps, parallelCtiTurnoffSamplingErr)
1012 if calibVersion < 1.3:
1013 inDict[
'inputGain'] = {amp: np.nan
for amp
in amps}
1015 inputGain = ampTable[
'INPUT_GAIN']
1016 inDict[
'inputGain'] = {amp: value
for amp, value
in zip(amps, inputGain)}
1018 inDict[
'serialTraps'] = {}
1019 trapTable = tableList[1]
1021 amps = trapTable[
'AMPLIFIER']
1022 sizes = trapTable[
'SIZE']
1023 emissionTimes = trapTable[
'EMISSION_TIME']
1024 pixels = trapTable[
'PIXEL']
1025 trap_type = trapTable[
'TYPE']
1026 coeffs = trapTable[
'COEFFS']
1028 for index, amp
in enumerate(amps):
1030 ampTrap[
'size'] = sizes[index]
1031 ampTrap[
'emissionTime'] = emissionTimes[index]
1032 ampTrap[
'pixel'] = pixels[index]
1033 ampTrap[
'trap_type'] = trap_type[index]
1037 inCoeffs = coeffs[index]
1039 nanValues = np.where(np.isnan(inCoeffs))[0]
1040 if nanValues
is not None:
1041 coeffLength = len(inCoeffs)
1042 while breakIndex < coeffLength:
1043 if coeffLength - breakIndex
in nanValues:
1049 outCoeffs = inCoeffs[0: coeffLength - breakIndex]
1051 outCoeffs = inCoeffs
1052 ampTrap[
'coeffs'] = outCoeffs.tolist()
1054 if ampTrap[
'trap_type'] ==
'linear':
1055 if len(ampTrap[
'coeffs']) < 1:
1056 raise ValueError(
"CTI Amplifier %s coefficients for trap has illegal length %d.",
1057 amp, len(ampTrap[
'coeffs']))
1058 elif ampTrap[
'trap_type'] ==
'logistic':
1059 if len(ampTrap[
'coeffs']) < 2:
1060 raise ValueError(
"CTI Amplifier %s coefficients for trap has illegal length %d.",
1061 amp, len(ampTrap[
'coeffs']))
1062 elif ampTrap[
'trap_type'] ==
'spline':
1063 if len(ampTrap[
'coeffs']) % 2 != 0:
1064 raise ValueError(
"CTI Amplifier %s coefficients for trap has illegal length %d.",
1065 amp, len(ampTrap[
'coeffs']))
1067 raise ValueError(
'Unknown trap type: %s', ampTrap[
'trap_type'])
1069 inDict[
'serialTraps'][amp] = ampTrap
1074 """Construct a list of tables containing the information in this
1077 The list of tables should create an identical calibration
1078 after being passed to this class's fromTable method.
1082 tableList : `list` [`lsst.afw.table.Table`]
1083 List of tables containing the crosstalk calibration
1084 information. Two tables are generated for this list, the
1085 first containing the per-amplifier CTI parameters, and the
1086 second containing the parameters for serial traps.
1099 serialCtiTurnoff = []
1100 parallelCtiTurnoff = []
1101 serialCtiTurnoffSamplingErr = []
1102 parallelCtiTurnoffSamplingErr = []
1109 signals.append(self.
signals[amp])
1115 serialCtiTurnoffSamplingErr.append(
1118 parallelCtiTurnoffSamplingErr.append(
1123 'AMPLIFIER': ampList,
1124 'DRIFT_SCALE': driftScale,
1125 'DECAY_TIME': decayTime,
1126 'GLOBAL_CTI': globalCti,
1128 'INPUT_GAIN': inputGain,
1129 'SERIAL_EPER': serialEper,
1130 'PARALLEL_EPER': parallelEper,
1131 'SERIAL_CTI_TURNOFF': serialCtiTurnoff,
1132 'PARALLEL_CTI_TURNOFF': parallelCtiTurnoff,
1133 'SERIAL_CTI_TURNOFF_SAMPLING_ERR': serialCtiTurnoffSamplingErr,
1134 'PARALLEL_CTI_TURNOFF_SAMPLING_ERR': parallelCtiTurnoffSamplingErr,
1138 tableList.append(ampTable)
1150 maxCoeffLength = np.maximum(maxCoeffLength, len(trap.coeffs))
1155 sizeList.append(trap.size)
1156 timeList.append(trap.emission_time)
1157 pixelList.append(trap.pixel)
1158 typeList.append(trap.trap_type)
1160 coeffs = trap.coeffs
1161 if len(coeffs) != maxCoeffLength:
1162 coeffs = np.pad(coeffs, (0, maxCoeffLength - len(coeffs)),
1163 constant_values=np.nan).tolist()
1164 coeffList.append(coeffs)
1166 trapTable = Table({
'AMPLIFIER': ampList,
1168 'EMISSION_TIME': timeList,
1171 'COEFFS': coeffList})
1173 tableList.append(trapTable)
1179 """Settings for deferred charge correction.
1183 doc=
"Number of prior pixels to use for local offset correction.",
1188 doc=
"Number of prior pixels to use for trap correction.",
1193 doc=
"If true, set serial prescan and parallel overscan to zero before correction.",
1199 """Task to correct an exposure for charge transfer inefficiency.
1201 This uses the methods described by Snyder et al. 2021, Journal of
1202 Astronimcal Telescopes, Instruments, and Systems, 7,
1203 048002. doi:10.1117/1.JATIS.7.4.048002 (Snyder+21).
1205 ConfigClass = DeferredChargeConfig
1206 _DefaultName =
'isrDeferredCharge'
1208 def run(self, exposure, ctiCalib, gains=None):
1209 """Correct deferred charge/CTI issues.
1213 exposure : `lsst.afw.image.Exposure`
1214 Exposure to correct the deferred charge on.
1215 ctiCalib : `lsst.ip.isr.DeferredChargeCalib`
1216 Calibration object containing the charge transfer
1218 gains : `dict` [`str`, `float`]
1219 A dictionary, keyed by amplifier name, of the gains to
1220 use. If gains is None, the nominal gains in the amplifier
1225 exposure : `lsst.afw.image.Exposure`
1226 The corrected exposure.
1230 This task will read the exposure metadata and determine if
1231 applying gains if necessary. The correction takes place in
1232 units of electrons. If bootstrapping, the gains used
1233 will just be 1.0. and the input/output units will stay in
1234 adu. If the input image is in adu, the output image will be
1235 in units of electrons. If the input image is in electron,
1236 the output image will be in electron.
1238 image = exposure.getMaskedImage().image
1239 detector = exposure.getDetector()
1242 imageUnits = exposure.getMetadata().get(
"LSST ISR UNITS")
1247 if imageUnits ==
"adu":
1253 if applyGains
and gains
is None:
1254 raise RuntimeError(
"No gains supplied for deferred charge correction.")
1256 with gainContext(exposure, image, apply=applyGains, gains=gains, isTrimmed=
False):
1258 for amp
in detector.getAmplifiers():
1259 ampName = amp.getName()
1261 ampImage = image[amp.getRawBBox()]
1262 if self.config.zeroUnusedPixels:
1265 ampImage[amp.getRawParallelOverscanBBox()].array[:, :] = 0.0
1266 ampImage[amp.getRawSerialPrescanBBox()].array[:, :] = 0.0
1270 ampData = self.
flipData(ampImage.array, amp)
1272 if ctiCalib.driftScale[ampName] > 0.0:
1274 ctiCalib.driftScale[ampName],
1275 ctiCalib.decayTime[ampName],
1276 self.config.nPixelOffsetCorrection)
1278 correctedAmpData = ampData.copy()
1281 ctiCalib.serialTraps[ampName],
1282 ctiCalib.globalCti[ampName],
1283 self.config.nPixelTrapCorrection)
1286 correctedAmpData = self.
flipData(correctedAmpData, amp)
1287 image[amp.getRawBBox()].array[:, :] = correctedAmpData[:, :]
1293 """Flip data array such that readout corner is at lower-left.
1297 ampData : `numpy.ndarray`, (nx, ny)
1299 amp : `lsst.afw.cameraGeom.Amplifier`
1300 Amplifier to get readout corner information.
1304 ampData : `numpy.ndarray`, (nx, ny)
1307 X_FLIP = {ReadoutCorner.LL:
False,
1308 ReadoutCorner.LR:
True,
1309 ReadoutCorner.UL:
False,
1310 ReadoutCorner.UR:
True}
1311 Y_FLIP = {ReadoutCorner.LL:
False,
1312 ReadoutCorner.LR:
False,
1313 ReadoutCorner.UL:
True,
1314 ReadoutCorner.UR:
True}
1316 if X_FLIP[amp.getReadoutCorner()]:
1317 ampData = np.fliplr(ampData)
1318 if Y_FLIP[amp.getReadoutCorner()]:
1319 ampData = np.flipud(ampData)
1325 r"""Remove CTI effects from local offsets.
1327 This implements equation 10 of Snyder+21. For an image with
1328 CTI, s'(m, n), the correction factor is equal to the maximum
1329 value of the set of:
1333 {A_L s'(m, n - j) exp(-j t / \tau_L)}_j=0^jmax
1337 inputArr : `numpy.ndarray`, (nx, ny)
1338 Input image data to correct.
1339 drift_scale : `float`
1340 Drift scale (Snyder+21 A_L value) to use in correction.
1341 decay_time : `float`
1342 Decay time (Snyder+21 \tau_L) of the correction.
1343 num_previous_pixels : `int`, optional
1344 Number of previous pixels to use for correction. As the
1345 CTI has an exponential decay, this essentially truncates
1346 the correction where that decay scales the input charge to
1351 outputArr : `numpy.ndarray`, (nx, ny)
1352 Corrected image data.
1354 r = np.exp(-1/decay_time)
1355 Ny, Nx = inputArr.shape
1358 offset = np.zeros((num_previous_pixels, Ny, Nx))
1359 offset[0, :, :] = drift_scale*np.maximum(0, inputArr)
1362 for n
in range(1, num_previous_pixels):
1363 offset[n, :, n:] = drift_scale*np.maximum(0, inputArr[:, :-n])*(r**n)
1365 Linv = np.amax(offset, axis=0)
1366 outputArr = inputArr - Linv
1372 r"""Apply localized trapping inverse operator to pixel signals.
1374 This implements equation 13 of Snyder+21. For an image with
1375 CTI, s'(m, n), the correction factor is equal to the maximum
1376 value of the set of:
1380 {A_L s'(m, n - j) exp(-j t / \tau_L)}_j=0^jmax
1384 inputArr : `numpy.ndarray`, (nx, ny)
1385 Input image data to correct.
1386 trap : `lsst.ip.isr.SerialTrap`
1387 Serial trap describing the capture and release of charge.
1389 Mean charge transfer inefficiency, b from Snyder+21.
1390 num_previous_pixels : `int`, optional
1391 Number of previous pixels to use for correction.
1395 outputArr : `numpy.ndarray`, (nx, ny)
1396 Corrected image data.
1399 Ny, Nx = inputArr.shape
1401 r = np.exp(-1/trap.emission_time)
1404 trap_occupancy = np.zeros((num_previous_pixels, Ny, Nx))
1405 for n
in range(num_previous_pixels):
1406 trap_occupancy[n, :, n+1:] = trap.capture(np.maximum(0, inputArr))[:, :-(n+1)]*(r**n)
1407 trap_occupancy = np.amax(trap_occupancy, axis=0)
1410 C = trap.capture(np.maximum(0, inputArr)) - trap_occupancy*r
1414 R = np.zeros(inputArr.shape)
1415 R[:, 1:] = trap_occupancy[:, 1:]*(1-r)
1418 outputArr = inputArr - a*T
fromDict(cls, dictionary, **kwargs)
updateMetadata(self, camera=None, detector=None, filterName=None, setCalibId=False, setCalibInfo=False, setDate=False, **kwargs)
dict serialCtiTurnoffSamplingErr
dict parallelCtiTurnoffSamplingErr
fromTable(cls, tableList)
fromDict(cls, dictionary)
fromDetector(self, detector)
local_trap_inverse(inputArr, trap, global_cti=0.0, num_previous_pixels=6)
local_offset_inverse(inputArr, drift_scale, decay_time, num_previous_pixels=15)
run(self, exposure, ctiCalib, gains=None)
__init__(self, gain, scale, decay_time, noise=0.0, offset=0.0)
local_offset(self, old, signal)
update_parameters(self, scale, decay_time)
negative_loglikelihood(self, params, signal, data, error, *args, **kwargs)
loglikelihood(self, params, signal, data, error, *args, **kwargs)
rms_error(self, params, signal, data, error, *args, **kwargs)
difference(self, params, signal, data, error, *args, **kwargs)
model_results(params, signal, num_transfers, start=1, stop=10)
ramp_exp(self, signal_list)
add_trap(self, serial_trap)
readout(self, serial_overscan_width=10, parallel_overscan_width=0)
__init__(self, imarr, prescan_width, output_amplifier, cti=0.0, traps=None)
__init__(self, size, emission_time, pixel, trap_type, coeffs)
capture(self, pixel_signals)
initialize(self, ny, nx, prescan_width)
trap_charge(self, free_charge)
model_results(params, signal, num_transfers, start=1, stop=10)
model_results(params, signal, num_transfers, amp, start=1, stop=10, trap_type=None)
gainContext(exp, image, apply, gains=None, invert=False, isTrimmed=True)