LSST Applications g0265f82a02+0e5473021a,g02d81e74bb+f5613e8b4f,g1470d8bcf6+190ad2ba91,g14a832a312+311607e4ab,g2079a07aa2+86d27d4dc4,g2305ad1205+a8e3196225,g295015adf3+b67ee847e5,g2bbee38e9b+0e5473021a,g337abbeb29+0e5473021a,g3ddfee87b4+a761f810f3,g487adcacf7+17c8fdbcbd,g50ff169b8f+96c6868917,g52b1c1532d+585e252eca,g591dd9f2cf+65b5bd823e,g5a732f18d5+53520f316c,g64a986408d+f5613e8b4f,g6c1bc301e9+51106c2951,g858d7b2824+f5613e8b4f,g8a8a8dda67+585e252eca,g99cad8db69+6729933424,g9ddcbc5298+9a081db1e4,ga1e77700b3+15fc3df1f7,ga8c6da7877+ef4e3a5875,gb0e22166c9+60f28cb32d,gb6a65358fc+0e5473021a,gba4ed39666+c2a2e4ac27,gbb8dafda3b+e9bba80f27,gc120e1dc64+eee469a5e5,gc28159a63d+0e5473021a,gcf0d15dbbd+a761f810f3,gdaeeff99f8+f9a426f77a,ge6526c86ff+d4c1d4bfef,ge79ae78c31+0e5473021a,gee10cc3b42+585e252eca,gf1cff7945b+f5613e8b4f,w.2024.16
LSST Data Management Base Package
Loading...
Searching...
No Matches
crosstalk.py
Go to the documentation of this file.
2# LSST Data Management System
3# Copyright 2008-2017 AURA/LSST.
4#
5# This product includes software developed by the
6# LSST Project (http://www.lsst.org/).
7#
8# This program is free software: you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation, either version 3 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the LSST License Statement and
19# the GNU General Public License along with this program. If not,
20# see <https://www.lsstcorp.org/LegalNotices/>.
21#
22"""
23Apply intra-detector crosstalk corrections
24"""
25
26__all__ = ["CrosstalkCalib", "CrosstalkConfig", "CrosstalkTask",
27 "NullCrosstalkTask"]
28
29import numpy as np
30from astropy.table import Table
31
32import lsst.afw.math
34import lsst.daf.butler
35from lsst.pex.config import Config, Field, ChoiceField, ListField
36from lsst.pipe.base import Task
37
38from lsst.ip.isr import IsrCalib
39
40
42 """Calibration of amp-to-amp crosstalk coefficients.
43
44 Parameters
45 ----------
46 detector : `lsst.afw.cameraGeom.Detector`, optional
47 Detector to use to pull coefficients from.
48 nAmp : `int`, optional
49 Number of amplifiers to initialize.
50 log : `logging.Logger`, optional
51 Log to write messages to.
52 **kwargs :
53 Parameters to pass to parent constructor.
54
55 Notes
56 -----
57 The crosstalk attributes stored are:
58
59 hasCrosstalk : `bool`
60 Whether there is crosstalk defined for this detector.
61 nAmp : `int`
62 Number of amplifiers in this detector.
63 crosstalkShape : `tuple` [`int`, `int`]
64 A tuple containing the shape of the ``coeffs`` matrix. This
65 should be equivalent to (``nAmp``, ``nAmp``).
66 coeffs : `numpy.ndarray`
67 A matrix containing the crosstalk coefficients. coeff[i][j]
68 contains the coefficients to calculate the contribution
69 amplifier_j has on amplifier_i (each row[i] contains the
70 corrections for detector_i).
71 coeffErr : `numpy.ndarray`, optional
72 A matrix (as defined by ``coeffs``) containing the standard
73 distribution of the crosstalk measurements.
74 coeffNum : `numpy.ndarray`, optional
75 A matrix containing the number of pixel pairs used to measure
76 the ``coeffs`` and ``coeffErr``.
77 coeffValid : `numpy.ndarray`, optional
78 A matrix of Boolean values indicating if the coefficient is
79 valid, defined as abs(coeff) > coeffErr / sqrt(coeffNum).
80 interChip : `dict` [`numpy.ndarray`]
81 A dictionary keyed by detectorName containing ``coeffs``
82 matrices used to correct for inter-chip crosstalk with a
83 source on the detector indicated.
84
85 """
86 _OBSTYPE = 'CROSSTALK'
87 _SCHEMA = 'Gen3 Crosstalk'
88 _VERSION = 1.0
89
90 def __init__(self, detector=None, nAmp=0, **kwargs):
91 self.hasCrosstalk = False
92 self.nAmp = nAmp if nAmp else 0
93 self.crosstalkShape = (self.nAmp, self.nAmp)
94
95 self.coeffs = np.zeros(self.crosstalkShape) if self.nAmp else None
96 self.coeffErr = np.zeros(self.crosstalkShape) if self.nAmp else None
97 self.coeffNum = np.zeros(self.crosstalkShape,
98 dtype=int) if self.nAmp else None
99 self.coeffValid = np.zeros(self.crosstalkShape,
100 dtype=bool) if self.nAmp else None
101 self.interChip = {}
102
103 super().__init__(**kwargs)
104 self.requiredAttributesrequiredAttributesrequiredAttributes.update(['hasCrosstalk', 'nAmp', 'coeffs',
105 'coeffErr', 'coeffNum', 'coeffValid',
106 'interChip'])
107 if detector:
108 self.fromDetectorfromDetector(detector)
109
110 def updateMetadata(self, setDate=False, **kwargs):
111 """Update calibration metadata.
112
113 This calls the base class's method after ensuring the required
114 calibration keywords will be saved.
115
116 Parameters
117 ----------
118 setDate : `bool`, optional
119 Update the CALIBDATE fields in the metadata to the current
120 time. Defaults to False.
121 kwargs :
122 Other keyword parameters to set in the metadata.
123 """
124 kwargs['DETECTOR'] = self._detectorId_detectorId
125 kwargs['DETECTOR_NAME'] = self._detectorName_detectorName
126 kwargs['DETECTOR_SERIAL'] = self._detectorSerial_detectorSerial
127 kwargs['HAS_CROSSTALK'] = self.hasCrosstalk
128 kwargs['NAMP'] = self.nAmp
129 self.crosstalkShape = (self.nAmp, self.nAmp)
130 kwargs['CROSSTALK_SHAPE'] = self.crosstalkShape
131
132 super().updateMetadata(setDate=setDate, **kwargs)
133
134 def fromDetector(self, detector, coeffVector=None):
135 """Set calibration parameters from the detector.
136
137 Parameters
138 ----------
139 detector : `lsst.afw.cameraGeom.Detector`
140 Detector to use to set parameters from.
141 coeffVector : `numpy.array`, optional
142 Use the detector geometry (bounding boxes and flip
143 information), but use ``coeffVector`` instead of the
144 output of ``detector.getCrosstalk()``.
145
146 Returns
147 -------
148 calib : `lsst.ip.isr.CrosstalkCalib`
149 The calibration constructed from the detector.
150
151 """
152 if detector.hasCrosstalk() or coeffVector:
153 self._detectorId_detectorId = detector.getId()
154 self._detectorName_detectorName = detector.getName()
155 self._detectorSerial_detectorSerial = detector.getSerial()
156
157 self.nAmp = len(detector)
158 self.crosstalkShape = (self.nAmp, self.nAmp)
159
160 if coeffVector is not None:
161 crosstalkCoeffs = coeffVector
162 else:
163 crosstalkCoeffs = detector.getCrosstalk()
164 if len(crosstalkCoeffs) == 1 and crosstalkCoeffs[0] == 0.0:
165 return self
166 self.coeffs = np.array(crosstalkCoeffs).reshape(self.crosstalkShape)
167
168 if self.coeffs.shape != self.crosstalkShape:
169 raise RuntimeError("Crosstalk coefficients do not match detector shape. "
170 f"{self.crosstalkShape} {self.nAmp}")
171
172 self.coeffErr = np.zeros(self.crosstalkShape)
173 self.coeffNum = np.zeros(self.crosstalkShape, dtype=int)
174 self.coeffValid = np.ones(self.crosstalkShape, dtype=bool)
175 self.interChip = {}
176
177 self.hasCrosstalk = True
179 return self
180
181 @classmethod
182 def fromDict(cls, dictionary):
183 """Construct a calibration from a dictionary of properties.
184
185 Must be implemented by the specific calibration subclasses.
186
187 Parameters
188 ----------
189 dictionary : `dict`
190 Dictionary of properties.
191
192 Returns
193 -------
194 calib : `lsst.ip.isr.CalibType`
195 Constructed calibration.
196
197 Raises
198 ------
199 RuntimeError
200 Raised if the supplied dictionary is for a different
201 calibration.
202 """
203 calib = cls()
204
205 if calib._OBSTYPE != dictionary['metadata']['OBSTYPE']:
206 raise RuntimeError(f"Incorrect crosstalk supplied. Expected {calib._OBSTYPE}, "
207 f"found {dictionary['metadata']['OBSTYPE']}")
208
209 calib.setMetadata(dictionary['metadata'])
210
211 if 'detectorName' in dictionary:
212 calib._detectorName = dictionary.get('detectorName')
213 elif 'DETECTOR_NAME' in dictionary:
214 calib._detectorName = dictionary.get('DETECTOR_NAME')
215 elif 'DET_NAME' in dictionary['metadata']:
216 calib._detectorName = dictionary['metadata']['DET_NAME']
217 else:
218 calib._detectorName = None
219
220 if 'detectorSerial' in dictionary:
221 calib._detectorSerial = dictionary.get('detectorSerial')
222 elif 'DETECTOR_SERIAL' in dictionary:
223 calib._detectorSerial = dictionary.get('DETECTOR_SERIAL')
224 elif 'DET_SER' in dictionary['metadata']:
225 calib._detectorSerial = dictionary['metadata']['DET_SER']
226 else:
227 calib._detectorSerial = None
228
229 if 'detectorId' in dictionary:
230 calib._detectorId = dictionary.get('detectorId')
231 elif 'DETECTOR' in dictionary:
232 calib._detectorId = dictionary.get('DETECTOR')
233 elif 'DETECTOR' in dictionary['metadata']:
234 calib._detectorId = dictionary['metadata']['DETECTOR']
235 elif calib._detectorSerial:
236 calib._detectorId = calib._detectorSerial
237 else:
238 calib._detectorId = None
239
240 if 'instrument' in dictionary:
241 calib._instrument = dictionary.get('instrument')
242 elif 'INSTRUME' in dictionary['metadata']:
243 calib._instrument = dictionary['metadata']['INSTRUME']
244 else:
245 calib._instrument = None
246
247 calib.hasCrosstalk = dictionary.get('hasCrosstalk',
248 dictionary['metadata'].get('HAS_CROSSTALK', False))
249 if calib.hasCrosstalk:
250 calib.nAmp = dictionary.get('nAmp', dictionary['metadata'].get('NAMP', 0))
251 calib.crosstalkShape = (calib.nAmp, calib.nAmp)
252 calib.coeffs = np.array(dictionary['coeffs']).reshape(calib.crosstalkShape)
253 if 'coeffErr' in dictionary:
254 calib.coeffErr = np.array(dictionary['coeffErr']).reshape(calib.crosstalkShape)
255 else:
256 calib.coeffErr = np.zeros_like(calib.coeffs)
257 if 'coeffNum' in dictionary:
258 calib.coeffNum = np.array(dictionary['coeffNum']).reshape(calib.crosstalkShape)
259 else:
260 calib.coeffNum = np.zeros_like(calib.coeffs, dtype=int)
261 if 'coeffValid' in dictionary:
262 calib.coeffValid = np.array(dictionary['coeffValid']).reshape(calib.crosstalkShape)
263 else:
264 calib.coeffValid = np.ones_like(calib.coeffs, dtype=bool)
265
266 calib.interChip = dictionary.get('interChip', None)
267 if calib.interChip:
268 for detector in calib.interChip:
269 coeffVector = calib.interChip[detector]
270 calib.interChip[detector] = np.array(coeffVector).reshape(calib.crosstalkShape)
271
272 calib.updateMetadata()
273 return calib
274
275 def toDict(self):
276 """Return a dictionary containing the calibration properties.
277
278 The dictionary should be able to be round-tripped through
279 `fromDict`.
280
281 Returns
282 -------
283 dictionary : `dict`
284 Dictionary of properties.
285 """
287
288 outDict = {}
289 metadata = self.getMetadata()
290 outDict['metadata'] = metadata
291
292 outDict['hasCrosstalk'] = self.hasCrosstalk
293 outDict['nAmp'] = self.nAmp
294 outDict['crosstalkShape'] = self.crosstalkShape
295
296 ctLength = self.nAmp*self.nAmp
297 outDict['coeffs'] = self.coeffs.reshape(ctLength).tolist()
298
299 if self.coeffErr is not None:
300 outDict['coeffErr'] = self.coeffErr.reshape(ctLength).tolist()
301 if self.coeffNum is not None:
302 outDict['coeffNum'] = self.coeffNum.reshape(ctLength).tolist()
303 if self.coeffValid is not None:
304 outDict['coeffValid'] = self.coeffValid.reshape(ctLength).tolist()
305
306 if self.interChip:
307 outDict['interChip'] = dict()
308 for detector in self.interChip:
309 outDict['interChip'][detector] = self.interChip[detector].reshape(ctLength).tolist()
310
311 return outDict
312
313 @classmethod
314 def fromTable(cls, tableList):
315 """Construct calibration from a list of tables.
316
317 This method uses the `fromDict` method to create the
318 calibration, after constructing an appropriate dictionary from
319 the input tables.
320
321 Parameters
322 ----------
323 tableList : `list` [`lsst.afw.table.Table`]
324 List of tables to use to construct the crosstalk
325 calibration.
326
327 Returns
328 -------
329 calib : `lsst.ip.isr.CrosstalkCalib`
330 The calibration defined in the tables.
331
332 """
333 coeffTable = tableList[0]
334
335 metadata = coeffTable.meta
336 inDict = dict()
337 inDict['metadata'] = metadata
338 inDict['hasCrosstalk'] = metadata['HAS_CROSSTALK']
339 inDict['nAmp'] = metadata['NAMP']
340
341 inDict['coeffs'] = coeffTable['CT_COEFFS']
342 if 'CT_ERRORS' in coeffTable.columns:
343 inDict['coeffErr'] = coeffTable['CT_ERRORS']
344 if 'CT_COUNTS' in coeffTable.columns:
345 inDict['coeffNum'] = coeffTable['CT_COUNTS']
346 if 'CT_VALID' in coeffTable.columns:
347 inDict['coeffValid'] = coeffTable['CT_VALID']
348
349 if len(tableList) > 1:
350 inDict['interChip'] = dict()
351 interChipTable = tableList[1]
352 for record in interChipTable:
353 inDict['interChip'][record['IC_SOURCE_DET']] = record['IC_COEFFS']
354
355 return cls().fromDict(inDict)
356
357 def toTable(self):
358 """Construct a list of tables containing the information in this
359 calibration.
360
361 The list of tables should create an identical calibration
362 after being passed to this class's fromTable method.
363
364 Returns
365 -------
366 tableList : `list` [`lsst.afw.table.Table`]
367 List of tables containing the crosstalk calibration
368 information.
369
370 """
371 tableList = []
373 catalog = Table([{'CT_COEFFS': self.coeffs.reshape(self.nAmp*self.nAmp),
374 'CT_ERRORS': self.coeffErr.reshape(self.nAmp*self.nAmp),
375 'CT_COUNTS': self.coeffNum.reshape(self.nAmp*self.nAmp),
376 'CT_VALID': self.coeffValid.reshape(self.nAmp*self.nAmp),
377 }])
378 # filter None, because astropy can't deal.
379 inMeta = self.getMetadata().toDict()
380 outMeta = {k: v for k, v in inMeta.items() if v is not None}
381 outMeta.update({k: "" for k, v in inMeta.items() if v is None})
382 catalog.meta = outMeta
383 tableList.append(catalog)
384
385 if self.interChip:
386 interChipTable = Table([{'IC_SOURCE_DET': sourceDet,
387 'IC_COEFFS': self.interChip[sourceDet].reshape(self.nAmp*self.nAmp)}
388 for sourceDet in self.interChip.keys()])
389 tableList.append(interChipTable)
390 return tableList
391
392 # Implementation methods.
393 @staticmethod
394 def extractAmp(image, amp, ampTarget, isTrimmed=False):
395 """Extract the image data from an amp, flipped to match ampTarget.
396
397 Parameters
398 ----------
399 image : `lsst.afw.image.Image` or `lsst.afw.image.MaskedImage`
400 Image containing the amplifier of interest.
401 amp : `lsst.afw.cameraGeom.Amplifier`
402 Amplifier on image to extract.
403 ampTarget : `lsst.afw.cameraGeom.Amplifier`
404 Target amplifier that the extracted image will be flipped
405 to match.
406 isTrimmed : `bool`
407 The image is already trimmed.
408 TODO : DM-15409 will resolve this.
409
410 Returns
411 -------
412 output : `lsst.afw.image.Image`
413 Image of the amplifier in the desired configuration.
414 """
415 X_FLIP = {lsst.afw.cameraGeom.ReadoutCorner.LL: False,
416 lsst.afw.cameraGeom.ReadoutCorner.LR: True,
417 lsst.afw.cameraGeom.ReadoutCorner.UL: False,
418 lsst.afw.cameraGeom.ReadoutCorner.UR: True}
419 Y_FLIP = {lsst.afw.cameraGeom.ReadoutCorner.LL: False,
420 lsst.afw.cameraGeom.ReadoutCorner.LR: False,
421 lsst.afw.cameraGeom.ReadoutCorner.UL: True,
422 lsst.afw.cameraGeom.ReadoutCorner.UR: True}
423
424 output = image[amp.getBBox() if isTrimmed else amp.getRawDataBBox()]
425 thisAmpCorner = amp.getReadoutCorner()
426 targetAmpCorner = ampTarget.getReadoutCorner()
427
428 # Flipping is necessary only if the desired configuration doesn't match
429 # what we currently have.
430 xFlip = X_FLIP[targetAmpCorner] ^ X_FLIP[thisAmpCorner]
431 yFlip = Y_FLIP[targetAmpCorner] ^ Y_FLIP[thisAmpCorner]
432 return lsst.afw.math.flipImage(output, xFlip, yFlip)
433
434 @staticmethod
435 def calculateBackground(mi, badPixels=["BAD"]):
436 """Estimate median background in image.
437
438 Getting a great background model isn't important for crosstalk
439 correction, since the crosstalk is at a low level. The median should
440 be sufficient.
441
442 Parameters
443 ----------
444 mi : `lsst.afw.image.MaskedImage`
445 MaskedImage for which to measure background.
446 badPixels : `list` of `str`
447 Mask planes to ignore.
448 Returns
449 -------
450 bg : `float`
451 Median background level.
452 """
453 mask = mi.getMask()
455 stats.setAndMask(mask.getPlaneBitMask(badPixels))
456 return lsst.afw.math.makeStatistics(mi, lsst.afw.math.MEDIAN, stats).getValue()
457
458 def subtractCrosstalk(self, thisExposure, sourceExposure=None, crosstalkCoeffs=None,
459 badPixels=["BAD"], minPixelToMask=45000,
460 crosstalkStr="CROSSTALK", isTrimmed=False,
461 backgroundMethod="None"):
462 """Subtract the crosstalk from thisExposure, optionally using a
463 different source.
464
465 We set the mask plane indicated by ``crosstalkStr`` in a target
466 amplifier for pixels in a source amplifier that exceed
467 ``minPixelToMask``. Note that the correction is applied to all pixels
468 in the amplifier, but only those that have a substantial crosstalk
469 are masked with ``crosstalkStr``.
470
471 The uncorrected image is used as a template for correction. This is
472 good enough if the crosstalk is small (e.g., coefficients < ~ 1e-3),
473 but if it's larger you may want to iterate.
474
475 Parameters
476 ----------
477 thisExposure : `lsst.afw.image.Exposure`
478 Exposure for which to subtract crosstalk.
479 sourceExposure : `lsst.afw.image.Exposure`, optional
480 Exposure to use as the source of the crosstalk. If not set,
481 thisExposure is used as the source (intra-detector crosstalk).
482 crosstalkCoeffs : `numpy.ndarray`, optional.
483 Coefficients to use to correct crosstalk.
484 badPixels : `list` of `str`
485 Mask planes to ignore.
486 minPixelToMask : `float`
487 Minimum pixel value (relative to the background level) in
488 source amplifier for which to set ``crosstalkStr`` mask plane
489 in target amplifier.
490 crosstalkStr : `str`
491 Mask plane name for pixels greatly modified by crosstalk
492 (above minPixelToMask).
493 isTrimmed : `bool`
494 The image is already trimmed.
495 This should no longer be needed once DM-15409 is resolved.
496 backgroundMethod : `str`
497 Method used to subtract the background. "AMP" uses
498 amplifier-by-amplifier background levels, "DETECTOR" uses full
499 exposure/maskedImage levels. Any other value results in no
500 background subtraction.
501 """
502 mi = thisExposure.getMaskedImage()
503 mask = mi.getMask()
504 detector = thisExposure.getDetector()
505 if self.hasCrosstalk is False:
506 self.fromDetectorfromDetector(detector, coeffVector=crosstalkCoeffs)
507
508 numAmps = len(detector)
509 if numAmps != self.nAmp:
510 raise RuntimeError(f"Crosstalk built for {self.nAmp} in {self._detectorName}, received "
511 f"{numAmps} in {detector.getName()}")
512
513 if sourceExposure:
514 source = sourceExposure.getMaskedImage()
515 sourceDetector = sourceExposure.getDetector()
516 else:
517 source = mi
518 sourceDetector = detector
519
520 if crosstalkCoeffs is not None:
521 coeffs = crosstalkCoeffs
522 else:
523 coeffs = self.coeffs
524 self.log.debug("CT COEFF: %s", coeffs)
525 # Set background level based on the requested method. The
526 # thresholdBackground holds the offset needed so that we only mask
527 # pixels high relative to the background, not in an absolute
528 # sense.
529 thresholdBackground = self.calculateBackground(source, badPixels)
530
531 backgrounds = [0.0 for amp in sourceDetector]
532 if backgroundMethod is None:
533 pass
534 elif backgroundMethod == "AMP":
535 backgrounds = [self.calculateBackground(source[amp.getBBox()], badPixels)
536 for amp in sourceDetector]
537 elif backgroundMethod == "DETECTOR":
538 backgrounds = [self.calculateBackground(source, badPixels) for amp in sourceDetector]
539
540 # Set the crosstalkStr bit for the bright pixels (those which will have
541 # significant crosstalk correction)
542 crosstalkPlane = mask.addMaskPlane(crosstalkStr)
543 footprints = lsst.afw.detection.FootprintSet(source,
544 lsst.afw.detection.Threshold(minPixelToMask
545 + thresholdBackground))
546 footprints.setMask(mask, crosstalkStr)
547 crosstalk = mask.getPlaneBitMask(crosstalkStr)
548
549 # Define a subtrahend image to contain all the scaled crosstalk signals
550 subtrahend = source.Factory(source.getBBox())
551 subtrahend.set((0, 0, 0))
552
553 coeffs = coeffs.transpose()
554 for ss, sAmp in enumerate(sourceDetector):
555 sImage = subtrahend[sAmp.getBBox() if isTrimmed else sAmp.getRawDataBBox()]
556 for tt, tAmp in enumerate(detector):
557 if coeffs[ss, tt] == 0.0:
558 continue
559 tImage = self.extractAmp(mi, tAmp, sAmp, isTrimmed)
560 tImage.getMask().getArray()[:] &= crosstalk # Remove all other masks
561 tImage -= backgrounds[tt]
562 sImage.scaledPlus(coeffs[ss, tt], tImage)
563
564 # Set crosstalkStr bit only for those pixels that have been
565 # significantly modified (i.e., those masked as such in 'subtrahend'),
566 # not necessarily those that are bright originally.
567 mask.clearMaskPlane(crosstalkPlane)
568 mi -= subtrahend # also sets crosstalkStr bit for bright pixels
569
570 def subtractCrosstalkParallelOverscanRegion(self, thisExposure, crosstalkCoeffs=None,
571 badPixels=["BAD"], crosstalkStr="CROSSTALK",
572 detectorConfig=None):
573 """Subtract crosstalk just from the parallel overscan region.
574
575 This assumes that serial overscan has been previously subtracted.
576
577 Parameters
578 ----------
579 thisExposure : `lsst.afw.image.Exposure`
580 Exposure for which to subtract crosstalk.
581 crosstalkCoeffs : `numpy.ndarray`, optional.
582 Coefficients to use to correct crosstalk.
583 badPixels : `list` of `str`
584 Mask planes to ignore.
585 crosstalkStr : `str`
586 Mask plane name for pixels greatly modified by crosstalk
587 (above minPixelToMask).
588 detectorConfig : `lsst.ip.isr.overscanDetectorConfig`, optional
589 Per-amplifier configs to use.
590 """
591 mi = thisExposure.getMaskedImage()
592 mask = mi.getMask()
593 detector = thisExposure.getDetector()
594 if self.hasCrosstalk is False:
595 self.fromDetectorfromDetector(detector, coeffVector=crosstalkCoeffs)
596
597 numAmps = len(detector)
598 if numAmps != self.nAmp:
599 raise RuntimeError(f"Crosstalk built for {self.nAmp} in {self._detectorName}, received "
600 f"{numAmps} in {detector.getName()}")
601
602 source = mi
603 sourceDetector = detector
604
605 if crosstalkCoeffs is not None:
606 coeffs = crosstalkCoeffs
607 else:
608 coeffs = self.coeffs
609
610 crosstalkPlane = mask.addMaskPlane(crosstalkStr)
611 crosstalk = mask.getPlaneBitMask(crosstalkStr)
612
613 subtrahend = source.Factory(source.getBBox())
614 subtrahend.set((0, 0, 0))
615
616 coeffs = coeffs.transpose()
617 for ss, sAmp in enumerate(sourceDetector):
618 if detectorConfig is not None:
619 ampConfig = detectorConfig.getOverscanAmpconfig(sAmp.getName())
620 if not ampConfig.doParallelOverscanCrosstalk:
621 # Skip crosstalk correction for this amplifier.
622 continue
623
624 sImage = subtrahend[sAmp.getRawParallelOverscanBBox()]
625 for tt, tAmp in enumerate(detector):
626 if coeffs[ss, tt] == 0.0:
627 continue
628 tImage = self.extractAmp(mi, tAmp, sAmp, False, parallelOverscan=True)
629 tImage.getMask().getArray()[:] &= crosstalk # Remove all other masks
630 sImage.scaledPlus(coeffs[ss, tt], tImage)
631
632 # Set crosstalkStr bit only for those pixels that have been
633 # significantly modified (i.e., those masked as such in 'subtrahend'),
634 # not necessarily those that are bright originally.
635 mask.clearMaskPlane(crosstalkPlane)
636 mi -= subtrahend # also sets crosstalkStr bit for bright pixels
637
638
640 """Configuration for intra-detector crosstalk removal."""
641 minPixelToMask = Field(
642 dtype=float,
643 doc="Set crosstalk mask plane for pixels over this value.",
644 default=45000
645 )
646 crosstalkMaskPlane = Field(
647 dtype=str,
648 doc="Name for crosstalk mask plane.",
649 default="CROSSTALK"
650 )
651 crosstalkBackgroundMethod = ChoiceField(
652 dtype=str,
653 doc="Type of background subtraction to use when applying correction.",
654 default="None",
655 allowed={
656 "None": "Do no background subtraction.",
657 "AMP": "Subtract amplifier-by-amplifier background levels.",
658 "DETECTOR": "Subtract detector level background."
659 },
660 )
661 useConfigCoefficients = Field(
662 dtype=bool,
663 doc="Ignore the detector crosstalk information in favor of CrosstalkConfig values?",
664 default=False,
665 )
666 crosstalkValues = ListField(
667 dtype=float,
668 doc=("Amplifier-indexed crosstalk coefficients to use. This should be arranged as a 1 x nAmp**2 "
669 "list of coefficients, such that when reshaped by crosstalkShape, the result is nAmp x nAmp. "
670 "This matrix should be structured so CT * [amp0 amp1 amp2 ...]^T returns the column "
671 "vector [corr0 corr1 corr2 ...]^T."),
672 default=[0.0],
673 )
674 crosstalkShape = ListField(
675 dtype=int,
676 doc="Shape of the coefficient array. This should be equal to [nAmp, nAmp].",
677 default=[1],
678 )
679
680 def getCrosstalk(self, detector=None):
681 """Return a 2-D numpy array of crosstalk coefficients in the proper
682 shape.
683
684 Parameters
685 ----------
686 detector : `lsst.afw.cameraGeom.detector`
687 Detector that is to be crosstalk corrected.
688
689 Returns
690 -------
691 coeffs : `numpy.ndarray`
692 Crosstalk coefficients that can be used to correct the detector.
693
694 Raises
695 ------
696 RuntimeError
697 Raised if no coefficients could be generated from this
698 detector/configuration.
699 """
700 if self.useConfigCoefficients is True:
701 coeffs = np.array(self.crosstalkValues).reshape(self.crosstalkShape)
702 if detector is not None:
703 nAmp = len(detector)
704 if coeffs.shape != (nAmp, nAmp):
705 raise RuntimeError("Constructed crosstalk coeffients do not match detector shape. "
706 f"{coeffs.shape} {nAmp}")
707 return coeffs
708 elif detector is not None and detector.hasCrosstalk() is True:
709 # Assume the detector defines itself consistently.
710 return detector.getCrosstalk()
711 else:
712 raise RuntimeError("Attempted to correct crosstalk without crosstalk coefficients")
713
714 def hasCrosstalk(self, detector=None):
715 """Return a boolean indicating if crosstalk coefficients exist.
716
717 Parameters
718 ----------
719 detector : `lsst.afw.cameraGeom.detector`
720 Detector that is to be crosstalk corrected.
721
722 Returns
723 -------
724 hasCrosstalk : `bool`
725 True if this detector/configuration has crosstalk coefficients
726 defined.
727 """
728 if self.useConfigCoefficients is True and self.crosstalkValues is not None:
729 return True
730 elif detector is not None and detector.hasCrosstalk() is True:
731 return True
732 else:
733 return False
734
735
736class CrosstalkTask(Task):
737 """Apply intra-detector crosstalk correction."""
738 ConfigClass = CrosstalkConfig
739 _DefaultName = 'isrCrosstalk'
740
741 def run(self,
742 exposure, crosstalk=None,
743 crosstalkSources=None, isTrimmed=False, camera=None, parallelOverscanRegion=False,
744 detectorConfig=None,
745 ):
746 """Apply intra-detector crosstalk correction
747
748 Parameters
749 ----------
750 exposure : `lsst.afw.image.Exposure`
751 Exposure for which to remove crosstalk.
752 crosstalkCalib : `lsst.ip.isr.CrosstalkCalib`, optional
753 External crosstalk calibration to apply. Constructed from
754 detector if not found.
755 crosstalkSources : `defaultdict`, optional
756 Image data for other detectors that are sources of
757 crosstalk in exposure. The keys are expected to be names
758 of the other detectors, with the values containing
759 `lsst.afw.image.Exposure` at the same level of processing
760 as ``exposure``.
761 The default for intra-detector crosstalk here is None.
762 isTrimmed : `bool`, optional
763 The image is already trimmed.
764 This should no longer be needed once DM-15409 is resolved.
765 camera : `lsst.afw.cameraGeom.Camera`, optional
766 Camera associated with this exposure. Only used for
767 inter-chip matching.
768 parallelOverscanRegion : `bool`, optional
769 Do subtraction in parallel overscan region (only)?
770 detectorConfig : `lsst.ip.isr.OverscanDetectorConfig`, optional
771 Per-amplifier configs used when parallelOverscanRegion=True.
772
773 Raises
774 ------
775 RuntimeError
776 Raised if called for a detector that does not have a
777 crosstalk correction. Also raised if the crosstalkSource
778 is not an expected type.
779 """
780 if not crosstalk:
781 crosstalk = CrosstalkCalib(log=self.log)
782 crosstalk = crosstalk.fromDetector(exposure.getDetector(),
783 coeffVector=self.config.crosstalkValues)
784 if not crosstalk.log:
785 crosstalk.log = self.log
786 if not crosstalk.hasCrosstalk:
787 raise RuntimeError("Attempted to correct crosstalk without crosstalk coefficients.")
788 elif parallelOverscanRegion:
789 self.log.info("Applying crosstalk correction to parallel overscan region.")
790 crosstalk.subtractCrosstalkParallelOverscanRegion(
791 exposure,
792 crosstalkCoeffs=crosstalk.coeffs,
793 detectorConfig=detectorConfig,
794 )
795 else:
796 self.log.info("Applying crosstalk correction.")
797 crosstalk.subtractCrosstalk(exposure, crosstalkCoeffs=crosstalk.coeffs,
798 minPixelToMask=self.config.minPixelToMask,
799 crosstalkStr=self.config.crosstalkMaskPlane, isTrimmed=isTrimmed,
800 backgroundMethod=self.config.crosstalkBackgroundMethod)
801
802 if crosstalk.interChip:
803 if crosstalkSources:
804 # Parse crosstalkSources: Identify which detectors we have
805 # available
806 if isinstance(crosstalkSources[0], lsst.afw.image.Exposure):
807 # Received afwImage.Exposure
808 sourceNames = [exp.getDetector().getName() for exp in crosstalkSources]
809 elif isinstance(crosstalkSources[0], lsst.daf.butler.DeferredDatasetHandle):
810 # Received dafButler.DeferredDatasetHandle
811 detectorList = [source.dataId['detector'] for source in crosstalkSources]
812 sourceNames = [camera[detector].getName() for detector in detectorList]
813 else:
814 raise RuntimeError("Unknown object passed as crosstalk sources.",
815 type(crosstalkSources[0]))
816
817 for detName in crosstalk.interChip:
818 if detName not in sourceNames:
819 self.log.warning("Crosstalk lists %s, not found in sources: %s",
820 detName, sourceNames)
821 continue
822 # Get the coefficients.
823 interChipCoeffs = crosstalk.interChip[detName]
824
825 sourceExposure = crosstalkSources[sourceNames.index(detName)]
826 if isinstance(sourceExposure, lsst.daf.butler.DeferredDatasetHandle):
827 # Dereference the dafButler.DeferredDatasetHandle.
828 sourceExposure = sourceExposure.get()
829 if not isinstance(sourceExposure, lsst.afw.image.Exposure):
830 raise RuntimeError("Unknown object passed as crosstalk sources.",
831 type(sourceExposure))
832
833 self.log.info("Correcting detector %s with ctSource %s",
834 exposure.getDetector().getName(),
835 sourceExposure.getDetector().getName())
836 crosstalk.subtractCrosstalk(exposure, sourceExposure=sourceExposure,
837 crosstalkCoeffs=interChipCoeffs,
838 minPixelToMask=self.config.minPixelToMask,
839 crosstalkStr=self.config.crosstalkMaskPlane,
840 isTrimmed=isTrimmed,
841 backgroundMethod=self.config.crosstalkBackgroundMethod)
842 else:
843 self.log.warning("Crosstalk contains interChip coefficients, but no sources found!")
844
845
847 def run(self, exposure, crosstalkSources=None):
848 self.log.info("Not performing any crosstalk correction")
A set of Footprints, associated with a MaskedImage.
A Threshold is used to pass a threshold value to detection algorithms.
Definition Threshold.h:43
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Definition Exposure.h:72
Pass parameters to a Statistics object.
Definition Statistics.h:83
updateMetadata(self, camera=None, detector=None, filterName=None, setCalibId=False, setCalibInfo=False, setDate=False, **kwargs)
Definition calibType.py:197
__init__(self, detector=None, nAmp=0, **kwargs)
Definition crosstalk.py:90
updateMetadata(self, setDate=False, **kwargs)
Definition crosstalk.py:110
subtractCrosstalkParallelOverscanRegion(self, thisExposure, crosstalkCoeffs=None, badPixels=["BAD"], crosstalkStr="CROSSTALK", detectorConfig=None)
Definition crosstalk.py:572
fromDetector(self, detector, coeffVector=None)
Definition crosstalk.py:134
calculateBackground(mi, badPixels=["BAD"])
Definition crosstalk.py:435
subtractCrosstalk(self, thisExposure, sourceExposure=None, crosstalkCoeffs=None, badPixels=["BAD"], minPixelToMask=45000, crosstalkStr="CROSSTALK", isTrimmed=False, backgroundMethod="None")
Definition crosstalk.py:461
extractAmp(image, amp, ampTarget, isTrimmed=False)
Definition crosstalk.py:394
run(self, exposure, crosstalk=None, crosstalkSources=None, isTrimmed=False, camera=None, parallelOverscanRegion=False, detectorConfig=None)
Definition crosstalk.py:745
run(self, exposure, crosstalkSources=None)
Definition crosstalk.py:847
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)
Definition Statistics.h:361
std::shared_ptr< ImageT > flipImage(ImageT const &inImage, bool flipLR, bool flipTB)
Flip an image left–right and/or top–bottom.