Loading [MathJax]/extensions/tex2jax.js
LSST Applications g0d33ba9806+97989ee787,g0fba68d861+57cab69267,g1e78f5e6d3+f1f8e160d9,g1fd858c14a+71413c3e43,g35bb328faa+fcb1d3bbc8,g4af146b050+0778a2a57a,g4d2262a081+e31b890e38,g4e0f332c67+53d227620f,g53246c7159+fcb1d3bbc8,g5a012ec0e7+e094618965,g60b5630c4e+97989ee787,g67b6fd64d1+98402a590a,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g87b7deb4dc+74fc793f15,g8852436030+d43d68859a,g89139ef638+98402a590a,g9125e01d80+fcb1d3bbc8,g94187f82dc+97989ee787,g989de1cb63+98402a590a,g9f33ca652e+8d6b0b7794,g9f7030ddb1+19b2dc913f,ga2b97cdc51+97989ee787,ga44b1db4f6+f1d430a4fa,gabe3b4be73+1e0a283bba,gabf8522325+fdcc45437b,gb1101e3267+d30395f664,gb58c049af0+f03b321e39,gb89ab40317+98402a590a,gcf25f946ba+d43d68859a,gd6cbbdb0b4+2800613beb,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+546cc78751,ge278dab8ac+c824a60960,ge410e46f29+98402a590a,gf67bdafdda+98402a590a,gfe06eef73a+2766dcde2b,w.2025.14
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
isrMockLSST.py
Go to the documentation of this file.
1# This file is part of ip_isr.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22__all__ = ["IsrMockLSSTConfig", "IsrMockLSST", "RawMockLSST",
23 "CalibratedRawMockLSST", "ReferenceMockLSST",
24 "BiasMockLSST", "DarkMockLSST", "FlatMockLSST", "FringeMockLSST",
25 "BfKernelMockLSST", "DefectMockLSST", "CrosstalkCoeffMockLSST",
26 "TransmissionMockLSST"]
27
28import numpy as np
29import galsim
30
31import lsst.geom as geom
32import lsst.pex.config as pexConfig
33import lsst.afw.detection as afwDetection
34import lsst.afw.math as afwMath
35from lsst.afw.cameraGeom import ReadoutCorner
36from lsst.daf.base import PropertyList
37from .crosstalk import CrosstalkCalib
38from .isrMock import IsrMockConfig, IsrMock
39from .defects import Defects
40from .assembleCcdTask import AssembleCcdTask
41from .linearize import Linearizer
42from .brighterFatterKernel import BrighterFatterKernel
43from .deferredCharge import (
44 SegmentSimulator,
45 FloatingOutputAmplifier,
46 DeferredChargeCalib
47)
48
49
51 """Configuration parameters for isrMockLSST.
52 """
53 # Detector parameters and "Exposure" parameters,
54 # mostly inherited from IsrMockConfig.
55 isLsstLike = pexConfig.Field(
56 dtype=bool,
57 default=True,
58 doc="If True, products have one raw image per amplifier, otherwise, one raw image per detector.",
59 )
60 calibMode = pexConfig.Field(
61 dtype=bool,
62 default=False,
63 doc="Set to true to produce mock calibration products, e.g. combined bias, dark, flat, etc.",
64 )
65 doAdd2DBias = pexConfig.Field(
66 dtype=bool,
67 default=True,
68 doc="Add 2D bias residual frame to data.",
69 )
70 doAddBrightDefects = pexConfig.Field(
71 dtype=bool,
72 default=True,
73 doc="Add bright defects (bad column) to data.",
74 )
75 brightDefectLevel = pexConfig.Field(
76 dtype=float,
77 default=30000.0,
78 doc="Bright defect level (electron).",
79 )
80 doAddBadParallelOverscanColumn = pexConfig.Field(
81 dtype=bool,
82 default=True,
83 doc="Add a bad column to the parallel overscan.",
84 )
85 badParallelOverscanColumnLevel = pexConfig.Field(
86 dtype=float,
87 default=300000.,
88 doc="Bright parallel overscan column level (electron). Should be above saturation.",
89 )
90 doAddBadParallelOverscanColumnNeighbors = pexConfig.Field(
91 dtype=bool,
92 default=True,
93 doc="Add low-level bad columns next to parallel overscan bad column.",
94 )
95 badParallelOverscanColumnNeighborsLevel = pexConfig.Field(
96 dtype=float,
97 default=50.0,
98 doc="Bright parallel overscan column neighbors level (electron).",
99 )
100 doAddBrighterFatter = pexConfig.Field(
101 dtype=bool,
102 default=False,
103 doc="Add brighter fatter and/or diffusion effects to image.",
104 )
105 doAddDeferredCharge = pexConfig.Field(
106 dtype=bool,
107 default=False,
108 doc="Add serial CTI at the amp level?",
109 )
110 bfStrength = pexConfig.Field(
111 dtype=float,
112 default=2.0,
113 doc="The brighter fatter effect scaling parameter (cannot be zero)."
114 "Nominally = 1, but = 2 is more realistic."
115 )
116 nRecalc = pexConfig.Field(
117 dtype=int,
118 default=10000,
119 doc="Number of electrons to accumulate before recalculating pixel shapes.",
120 )
121 doAddClockInjectedOffset = pexConfig.Field(
122 dtype=bool,
123 default=True,
124 doc="Add clock-injected offset to data (on-chip bias level).",
125 )
126 clockInjectedOffsetLevel = pexConfig.Field(
127 dtype=float,
128 default=8500.0,
129 doc="Clock-injected offset (on-chip bias level), in electron.",
130 )
131 noise2DBias = pexConfig.Field(
132 dtype=float,
133 default=2.0,
134 doc="Noise (in electron) to generate a 2D bias residual frame.",
135 )
136 doAddDarkNoiseOnly = pexConfig.Field(
137 dtype=bool,
138 default=False,
139 doc="Add only dark current noise, for testing consistency.",
140 )
141 doAddParallelOverscanRamp = pexConfig.Field(
142 dtype=bool,
143 default=True,
144 doc="Add overscan ramp to parallel overscan and data regions.",
145 )
146 doAddSerialOverscanRamp = pexConfig.Field(
147 dtype=bool,
148 default=True,
149 doc="Add overscan ramp to serial overscan and data regions.",
150 )
151 doAddHighSignalNonlinearity = pexConfig.Field(
152 dtype=bool,
153 default=True,
154 doc="Add high signal non-linearity to overscan and data regions?",
155 )
156 doAddLowSignalNonlinearity = pexConfig.Field(
157 dtype=bool,
158 default=False,
159 doc="Add low signal non-linearity to overscan and data regions? (Not supported yet.",
160 )
161 highSignalNonlinearityThreshold = pexConfig.Field(
162 dtype=float,
163 default=40_000.,
164 doc="Threshold (in adu) for the non-linearity to be considered ``high signal``.",
165 )
166 doApplyGain = pexConfig.Field(
167 dtype=bool,
168 default=True,
169 doc="Add gain to data.",
170 )
171 doRoundAdu = pexConfig.Field(
172 dtype=bool,
173 default=True,
174 doc="Round adu values to nearest integer.",
175 )
176 gainDict = pexConfig.DictField(
177 keytype=str,
178 itemtype=float,
179 doc="Dictionary of amp name to gain; any amps not listed will use "
180 "config.gain as the value. Units are electron/adu.",
181 default={
182 "C:0,0": 1.65,
183 "C:0,1": 1.60,
184 "C:0,2": 1.55,
185 "C:0,3": 1.70,
186 "C:1,0": 1.75,
187 "C:1,1": 1.80,
188 "C:1,2": 1.85,
189 "C:1,3": 1.70,
190 },
191 )
192 assembleCcd = pexConfig.ConfigurableField(
193 target=AssembleCcdTask,
194 doc="CCD assembly task; used for defect box conversions.",
195 )
196
197 def validate(self):
198 super().validate()
199
201 raise NotImplementedError("Low signal non-linearity is not implemented.")
202
204 raise NotImplementedError("Must be untrimmed for mock serial CTI to"
205 "realistically add charge into overscan regions.")
206
207 def setDefaults(self):
208 super().setDefaults()
209
210 self.gain = 1.7 # Default value.
211 self.skyLevel = 1700.0 # electron
212 self.sourceFlux = [50_000.0] # electron
213 self.sourceX = [35.0] # pixel
214 self.sourceY = [37.0] # pixel
215 self.overscanScale = 170.0 # electron
216 self.biasLevel = 20_000.0 # adu
217 self.doAddCrosstalk = True
218
219
221 """Class to generate consistent mock images for ISR testing.
222 """
223 ConfigClass = IsrMockLSSTConfig
224 _DefaultName = "isrMockLSST"
225
226 def __init__(self, **kwargs):
227 super().__init__(**kwargs)
228
229 # Get kernel derived from imSim generated flats with BFE. The kernel
230 # was used for Ops Rehearsal 3 for LSSTCam-type sensors
231 # See https://rubinobs.atlassian.net/browse/DM-43059 for more details.
232 self.bfKernel = np.array([[4.83499829e-01, 8.10171823e-01, 5.31096720e-01,
233 3.54369868e-02, -8.44782871e-01, -1.64614462e+00,
234 -3.83933101e+00, -5.60243416e+00, -6.51691578e+00,
235 -5.60243416e+00, -3.83933101e+00, -1.64614462e+00,
236 -8.44782871e-01, 3.54369868e-02, 5.31096720e-01,
237 8.10171823e-01, 4.83499829e-01],
238 [1.12382749e+00, 2.22609074e+00, 1.27877807e+00,
239 4.55434098e-01, -1.76842385e+00, -1.90046460e+00,
240 -8.10874526e+00, -1.20534899e+01, -1.48627948e+01,
241 -1.20534899e+01, -8.10874526e+00, -1.90046460e+00,
242 -1.76842385e+00, 4.55434098e-01, 1.27877807e+00,
243 2.22609074e+00, 1.12382749e+00],
244 [1.78571940e+00, 4.38918110e+00, 3.95098587e+00,
245 3.70961649e-01, -3.48151981e+00, -9.61567736e+00,
246 -1.78621172e+01, -2.32278872e+01, -2.31833727e+01,
247 -2.32278872e+01, -1.78621172e+01, -9.61567736e+00,
248 -3.48151981e+00, 3.70961649e-01, 3.95098587e+00,
249 4.38918110e+00, 1.78571940e+00],
250 [1.62986900e+00, 3.67851228e+00, 5.68645252e+00,
251 2.15342566e-01, -8.89937202e+00, -1.44739813e+01,
252 -2.98952660e+01, -4.37420817e+01, -4.83160958e+01,
253 -4.37420817e+01, -2.98952660e+01, -1.44739813e+01,
254 -8.89937202e+00, 2.15342566e-01, 5.68645252e+00,
255 3.67851228e+00, 1.62986900e+00],
256 [1.05524430e+00, 1.71917897e+00, 1.73105590e+00,
257 -2.10088420e+00, -1.15118208e+01, -2.55007598e+01,
258 -4.73056159e+01, -6.97257685e+01, -8.09264433e+01,
259 -6.97257685e+01, -4.73056159e+01, -2.55007598e+01,
260 -1.15118208e+01, -2.10088420e+00, 1.73105590e+00,
261 1.71917897e+00, 1.05524430e+00],
262 [8.71929228e-01, 5.41025574e-01, 9.47560771e-01,
263 -5.75314708e-01, -7.46104027e+00, -4.42314481e+01,
264 -9.54126971e+01, -1.61603201e+02, -2.07520692e+02,
265 -1.61603201e+02, -9.54126971e+01, -4.42314481e+01,
266 -7.46104027e+00, -5.75314708e-01, 9.47560771e-01,
267 5.41025574e-01, 8.71929228e-01],
268 [1.89144704e+00, 3.57543979e+00, -6.91419168e-02,
269 -3.37950835e+00, -1.46695089e+01, -7.22850746e+01,
270 -1.65563055e+02, -3.10820425e+02, -4.70026655e+02,
271 -3.10820425e+02, -1.65563055e+02, -7.22850746e+01,
272 -1.46695089e+01, -3.37950835e+00, -6.91419168e-02,
273 3.57543979e+00, 1.89144704e+00],
274 [3.11841913e+00, 7.84024994e+00, 1.88495248e+00,
275 -7.69011009e+00, -2.71782400e+01, -1.04343326e+02,
276 -2.47561370e+02, -5.32959841e+02, -1.16529012e+03,
277 -5.32959841e+02, -2.47561370e+02, -1.04343326e+02,
278 -2.71782400e+01, -7.69011009e+00, 1.88495248e+00,
279 7.84024994e+00, 3.11841913e+00],
280 [2.74197956e+00, 4.73107997e+00, -9.48352966e-01,
281 -9.44822832e+00, -3.06477671e+01, -1.26788739e+02,
282 -3.22828411e+02, -8.47943472e+02, -3.87702420e+03,
283 -8.47943472e+02, -3.22828411e+02, -1.26788739e+02,
284 -3.06477671e+01, -9.44822832e+00, -9.48352966e-01,
285 4.73107997e+00, 2.74197956e+00],
286 [3.11841913e+00, 7.84024994e+00, 1.88495248e+00,
287 -7.69011009e+00, -2.71782400e+01, -1.04343326e+02,
288 -2.47561370e+02, -5.32959841e+02, -1.16529012e+03,
289 -5.32959841e+02, -2.47561370e+02, -1.04343326e+02,
290 -2.71782400e+01, -7.69011009e+00, 1.88495248e+00,
291 7.84024994e+00, 3.11841913e+00],
292 [1.89144704e+00, 3.57543979e+00, -6.91419168e-02,
293 -3.37950835e+00, -1.46695089e+01, -7.22850746e+01,
294 -1.65563055e+02, -3.10820425e+02, -4.70026655e+02,
295 -3.10820425e+02, -1.65563055e+02, -7.22850746e+01,
296 -1.46695089e+01, -3.37950835e+00, -6.91419168e-02,
297 3.57543979e+00, 1.89144704e+00],
298 [8.71929228e-01, 5.41025574e-01, 9.47560771e-01,
299 -5.75314708e-01, -7.46104027e+00, -4.42314481e+01,
300 -9.54126971e+01, -1.61603201e+02, -2.07520692e+02,
301 -1.61603201e+02, -9.54126971e+01, -4.42314481e+01,
302 -7.46104027e+00, -5.75314708e-01, 9.47560771e-01,
303 5.41025574e-01, 8.71929228e-01],
304 [1.05524430e+00, 1.71917897e+00, 1.73105590e+00,
305 -2.10088420e+00, -1.15118208e+01, -2.55007598e+01,
306 -4.73056159e+01, -6.97257685e+01, -8.09264433e+01,
307 -6.97257685e+01, -4.73056159e+01, -2.55007598e+01,
308 -1.15118208e+01, -2.10088420e+00, 1.73105590e+00,
309 1.71917897e+00, 1.05524430e+00],
310 [1.62986900e+00, 3.67851228e+00, 5.68645252e+00,
311 2.15342566e-01, -8.89937202e+00, -1.44739813e+01,
312 -2.98952660e+01, -4.37420817e+01, -4.83160958e+01,
313 -4.37420817e+01, -2.98952660e+01, -1.44739813e+01,
314 -8.89937202e+00, 2.15342566e-01, 5.68645252e+00,
315 3.67851228e+00, 1.62986900e+00],
316 [1.78571940e+00, 4.38918110e+00, 3.95098587e+00,
317 3.70961649e-01, -3.48151981e+00, -9.61567736e+00,
318 -1.78621172e+01, -2.32278872e+01, -2.31833727e+01,
319 -2.32278872e+01, -1.78621172e+01, -9.61567736e+00,
320 -3.48151981e+00, 3.70961649e-01, 3.95098587e+00,
321 4.38918110e+00, 1.78571940e+00],
322 [1.12382749e+00, 2.22609074e+00, 1.27877807e+00,
323 4.55434098e-01, -1.76842385e+00, -1.90046460e+00,
324 -8.10874526e+00, -1.20534899e+01, -1.48627948e+01,
325 -1.20534899e+01, -8.10874526e+00, -1.90046460e+00,
326 -1.76842385e+00, 4.55434098e-01, 1.27877807e+00,
327 2.22609074e+00, 1.12382749e+00],
328 [4.83499829e-01, 8.10171823e-01, 5.31096720e-01,
329 3.54369868e-02, -8.44782871e-01, -1.64614462+00,
330 -3.83933101e+00, -5.60243416e+00, -6.51691578e+00,
331 -5.60243416e+00, -3.83933101e+00, -1.64614462e+00,
332 -8.44782871e-01, 3.54369868e-02, 5.31096720e-01,
333 8.10171823e-01, 4.83499829e-01]]) * 1e-10
334
335 # Spline trap coefficients and the ctiCalibDict are all taken from a
336 # cti calibration measured from LSSTCam sensor R03_S12 during Run 5
337 # EO testing. These are the coefficients for the spline trap model
338 # used in the deferred charge calibration. The collection can be
339 # found in /repo/ir2: u/abrought/13144/cti (processed 3/4/2024).
340 self.splineTrapCoeffs = np.array([0.0, 28.1, 47.4, 56.4, 66.6, 78.6, 92.4, 109.4,
341 129.0, 151.9, 179.4, 211.9, 250.5, 296.2, 350.0,
342 413.5, 488.0, 576.0, 680.4, 753.0, 888.2, 1040.5,
343 1254.1, 1478.9, 1747.0, 2055.7, 2416.9, 2855.2,
344 3361.9, 3969.4, 4665.9, 5405.3, 6380.0, 7516.7,
345 8875.9, 10488.6, 12681.9, 14974.2, 17257.6, 20366.5,
346 24026.7, 28372.1, 33451.7, 39550.4, 46624.8, 55042.9,
347 64862.7, 76503.1, 90265.6, 106384.2, 0.0, 0.0, 0.0,
348 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1,
349 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0,
350 0.1, 0.2, 0.6, 0.1, 0.0, 0.1, 0.0, 0.6, 0.3, 0.5, 0.8,
351 0.8, 1.5, 2.0, 1.8, 2.4, 2.6, 3.7, 5.0, 6.4, 8.4, 10.9,
352 14.5, 21.1, 28.9])
353
354 self.ctiCalibDict = {'driftScale': {'C:0,0': 0.000127,
355 'C:0,1': 0.000137,
356 'C:0,2': 0.000138,
357 'C:0,3': 0.000147,
358 'C:1,0': 0.000147,
359 'C:1,1': 0.000122,
360 'C:1,2': 0.000123,
361 'C:1,3': 0.000116},
362 'decayTime': {'C:0,0': 2.30,
363 'C:0,1': 2.21,
364 'C:0,2': 2.28,
365 'C:0,3': 2.34,
366 'C:1,0': 2.30,
367 'C:1,1': 2.40,
368 'C:1,2': 2.51,
369 'C:1,3': 2.21},
370 'globalCti': {'C:0,0': 5.25e-07,
371 'C:0,1': 5.38e-07,
372 'C:0,2': 5.80e-07,
373 'C:0,3': 5.91e-07,
374 'C:1,0': 6.24e-07,
375 'C:1,1': 5.72e-07,
376 'C:1,2': 5.60e-07,
377 'C:1,3': 4.40e-07},
378 'signals': {'C:0,0': np.linspace(1.0e2, 1.0e5, 10),
379 'C:0,1': np.linspace(1.0e2, 1.0e5, 10),
380 'C:0,2': np.linspace(1.0e2, 1.0e5, 10),
381 'C:0,3': np.linspace(1.0e2, 1.0e5, 10),
382 'C:1,0': np.linspace(1.0e2, 1.0e5, 10),
383 'C:1,1': np.linspace(1.0e2, 1.0e5, 10),
384 'C:1,2': np.linspace(1.0e2, 1.0e5, 10),
385 'C:1,3': np.linspace(1.0e2, 1.0e5, 10)},
386 'serialEper': {'C:0,0': np.full(10, 5.25e-07),
387 'C:0,1': np.full(10, 5.38e-07),
388 'C:0,2': np.full(10, 5.80e-07),
389 'C:0,3': np.full(10, 5.91e-07),
390 'C:1,0': np.full(10, 6.24e-07),
391 'C:1,1': np.full(10, 5.72e-07),
392 'C:1,2': np.full(10, 5.60e-07),
393 'C:1,3': np.full(10, 4.40e-07)},
394 'parallelEper': {'C:0,0': np.full(10, 5.25e-07),
395 'C:0,1': np.full(10, 5.38e-07),
396 'C:0,2': np.full(10, 5.80e-07),
397 'C:0,3': np.full(10, 5.91e-07),
398 'C:1,0': np.full(10, 6.24e-07),
399 'C:1,1': np.full(10, 5.72e-07),
400 'C:1,2': np.full(10, 5.60e-07),
401 'C:1,3': np.full(10, 4.40e-07)},
402 'serialCtiTurnoff': {'C:0,0': 1.0e5,
403 'C:0,1': 1.0e5,
404 'C:0,2': 1.0e5,
405 'C:0,3': 1.0e5,
406 'C:1,0': 1.0e5,
407 'C:1,1': 1.0e5,
408 'C:1,2': 1.0e5,
409 'C:1,3': 1.0e5},
410 'parallelCtiTurnoff': {'C:0,0': 1.0e5,
411 'C:0,1': 1.0e5,
412 'C:0,2': 1.0e5,
413 'C:0,3': 1.0e5,
414 'C:1,0': 1.0e5,
415 'C:1,1': 1.0e5,
416 'C:1,2': 1.0e5,
417 'C:1,3': 1.0e5},
418 'serialCtiTurnoffSamplingErr': {'C:0,0': 1.0e3,
419 'C:0,1': 1.0e3,
420 'C:0,2': 1.0e3,
421 'C:0,3': 1.0e3,
422 'C:1,0': 1.0e3,
423 'C:1,1': 1.0e3,
424 'C:1,2': 1.0e3,
425 'C:1,3': 1.0e3},
426 'parallelCtiTurnoffSamplingErr': {'C:0,0': 1.0e3,
427 'C:0,1': 1.0e3,
428 'C:0,2': 1.0e3,
429 'C:0,3': 1.0e3,
430 'C:1,0': 1.0e3,
431 'C:1,1': 1.0e3,
432 'C:1,2': 1.0e3,
433 'C:1,3': 1.0e3},
434 'serialTraps': {'C:0,0': {'size': 20000.0,
435 'emissionTime': 0.4,
436 'pixel': 1,
437 'trap_type': 'spline',
438 'coeffs': self.splineTrapCoeffs},
439 'C:0,1': {'size': 20000.0,
440 'emissionTime': 0.4,
441 'pixel': 1,
442 'trap_type': 'spline',
443 'coeffs': self.splineTrapCoeffs},
444 'C:0,2': {'size': 20000.0,
445 'emissionTime': 0.4,
446 'pixel': 1,
447 'trap_type': 'spline',
448 'coeffs': self.splineTrapCoeffs},
449 'C:0,3': {'size': 20000.0,
450 'emissionTime': 0.4,
451 'pixel': 1,
452 'trap_type': 'spline',
453 'coeffs': self.splineTrapCoeffs},
454 'C:1,0': {'size': 20000.0,
455 'emissionTime': 0.4,
456 'pixel': 1,
457 'trap_type': 'spline',
458 'coeffs': self.splineTrapCoeffs},
459 'C:1,1': {'size': 20000.0,
460 'emissionTime': 0.4,
461 'pixel': 1,
462 'trap_type': 'spline',
463 'coeffs': self.splineTrapCoeffs},
464 'C:1,2': {'size': 20000.0,
465 'emissionTime': 0.4,
466 'pixel': 1,
467 'trap_type': 'spline',
468 'coeffs': self.splineTrapCoeffs},
469 'C:1,3': {'size': 20000.0,
470 'emissionTime': 0.4,
471 'pixel': 1,
472 'trap_type': 'spline',
473 'coeffs': self.splineTrapCoeffs}}}
474
476
477 # Cross-talk coeffs are defined in the parent class.
478
479 self.makeSubtask("assembleCcd")
480
481 def run(self):
482 """Generate a mock ISR product following LSSTCam ISR, and return it.
483
484 Returns
485 -------
486 image : `lsst.afw.image.Exposure`
487 Simulated ISR image with signals added.
488 dataProduct :
489 Simulated ISR data products.
490 None :
491 Returned if no valid configuration was found.
492
493 Raises
494 ------
495 RuntimeError
496 Raised if both doGenerateImage and doGenerateData are specified.
497 """
498 if self.config.doGenerateImage and self.config.doGenerateData:
499 raise RuntimeError("Only one of doGenerateImage and doGenerateData may be specified.")
500 elif self.config.doGenerateImage:
501 return self.makeImage()
502 elif self.config.doGenerateData:
503 return self.makeData()
504 else:
505 return None
506
507 def makeImage(self):
508 """Generate a simulated ISR LSST image.
509
510 Returns
511 -------
512 exposure : `lsst.afw.image.Exposure` or `dict`
513 Simulated ISR image data.
514
515 Notes
516 -----
517 This method constructs a "raw" data image.
518 """
519 exposure = self.getExposure()
520
521 # Set up random number generators for consistency of components,
522 # no matter the group that are configured.
523 rngSky = np.random.RandomState(seed=self.config.rngSeed + 1)
524 rngDark = np.random.RandomState(seed=self.config.rngSeed + 2)
525 rng2DBias = np.random.RandomState(seed=self.config.rngSeed + 3)
526 rngOverscan = np.random.RandomState(seed=self.config.rngSeed + 4)
527 rngReadNoise = np.random.RandomState(seed=self.config.rngSeed + 5)
528 rngBrighterFatter = galsim.BaseDeviate(self.config.rngSeed + 6)
529
530 # Create the linearizer if we will need it.
531 if self.config.doAddHighSignalNonlinearity:
532 linearizer = LinearizerMockLSST().run()
533
534 # We introduce effects as they happen from a source to the signal,
535 # so the effects go from electron to adu.
536 # The ISR steps will then correct these effects in the reverse order.
537 for idx, amp in enumerate(exposure.getDetector()):
538 # Get image bbox and data
539 bbox = None
540 if self.config.isTrimmed:
541 bbox = amp.getBBox()
542 bboxFull = bbox
543 else:
544 bbox = amp.getRawDataBBox()
545 bboxFull = amp.getRawBBox()
546
547 # This is the image data (excluding pre/overscans).
548 ampImageData = exposure.image[bbox]
549 # This is the full data (including pre/overscans if untrimmed).
550 ampFullData = exposure.image[bboxFull]
551
552 # Astrophysical signals are all in electron (e-).
553 # These are only applied to the imaging portion of the
554 # amplifier (ampImageData)
555
556 if self.config.doAddSky:
557 # The sky effects are in electron.
559 ampImageData,
560 self.config.skyLevel,
561 np.sqrt(self.config.skyLevel),
562 rng=rngSky,
563 )
564
565 if self.config.doAddSource:
566 for sourceAmp, sourceFlux, sourceX, sourceY in zip(self.config.sourceAmp,
567 self.config.sourceFlux,
568 self.config.sourceX,
569 self.config.sourceY):
570 if idx == sourceAmp:
571 # The source flux is in electron.
572 self.amplifierAddSource(ampImageData, sourceFlux, sourceX, sourceY)
573
574 if self.config.doAddFringe:
575 # Fringes are added in electron.
576 self.amplifierAddFringe(amp,
577 ampImageData,
578 np.array(self.config.fringeScale),
579 x0=np.array(self.config.fringeX0),
580 y0=np.array(self.config.fringeY0))
581
582 if self.config.doAddFlat:
583 if self.config.calibMode:
584 # In case we are making a combined flat,
585 # add a non-zero signal so the mock flat can be multiplied
586 self.amplifierAddNoise(ampImageData, 1.0, 0.0)
587 # Multiply each amplifier by a Gaussian centered on u0 and v0
588 u0 = exposure.getDetector().getBBox().getDimensions().getX()/2.
589 v0 = exposure.getDetector().getBBox().getDimensions().getY()/2.
590 self.amplifierMultiplyFlat(amp, ampImageData, self.config.flatDrop, u0=u0, v0=v0)
591
592 # On-chip electronic effects.
593
594 # 1. Add bright defect(s).
595 if self.config.doAddBrightDefects:
596 defectList = self.makeDefectList(isTrimmed=self.config.isTrimmed)
597
598 for defect in defectList:
599 exposure.image[defect.getBBox()] = self.config.brightDefectLevel
600
601 for idx, amp in enumerate(exposure.getDetector()):
602 # Get image bbox and data
603 bbox = None
604 if self.config.isTrimmed:
605 bbox = amp.getBBox()
606 bboxFull = bbox
607 else:
608 bbox = amp.getRawDataBBox()
609 bboxFull = amp.getRawBBox()
610
611 # This is the image data (excluding pre/overscans).
612 ampImageData = exposure.image[bbox]
613 # This is the full data (including pre/overscans if untrimmed).
614 ampFullData = exposure.image[bboxFull]
615
616 # 2. Add dark current (electron) to imaging portion of the amp.
617 if self.config.doAddDark or self.config.doAddDarkNoiseOnly:
618 if self.config.doAddDarkNoiseOnly:
619 darkLevel = 0.0
620 else:
621 darkLevel = self.config.darkRate * self.config.darkTime
622 if self.config.calibMode:
623 darkNoise = 0.0
624 else:
625 darkNoise = np.sqrt(self.config.darkRate * self.config.darkTime)
626
627 self.amplifierAddNoise(ampImageData, darkLevel, darkNoise, rng=rngDark)
628
629 # 3. Add BF effect (electron) to imaging portion of the amp.
630 if self.config.doAddBrighterFatter is True:
632 ampImageData,
633 rngBrighterFatter,
634 self.config.bfStrength,
635 self.config.nRecalc,
636 )
637
638 # 4. Add serial CTI (electron) to amplifier (imaging + overscan).
639 if self.config.doAddDeferredCharge:
640 # Get the free charge area for the amplifier.
641 self.amplifierAddDeferredCharge(exposure, amp)
642
643 # 5. Add 2D bias residual (electron) to imaging portion of the amp.
644 if self.config.doAdd2DBias:
645 # For now we use an unstructured noise field to add some
646 # consistent 2D bias residual that can be subtracted. In
647 # the future this can be made into a warm corner (for example).
649 ampImageData,
650 0.0,
651 self.config.noise2DBias,
652 rng=rng2DBias,
653 )
654
655 # 6. Add clock-injected offset (electron) to amplifer
656 # (imaging + overscan).
657 # This is just an offset that will be crosstalked and modified by
658 # the gain, and does not have a noise associated with it.
659 if self.config.doAddClockInjectedOffset:
661 ampFullData,
662 self.config.clockInjectedOffsetLevel,
663 0.0,
664 )
665
666 # 7./8. Add serial and parallel overscan slopes (electron)
667 # (imaging + overscan)
668 if (self.config.doAddParallelOverscanRamp or self.config.doAddSerialOverscanRamp) and \
669 not self.config.isTrimmed:
670
671 if self.config.doAddParallelOverscanRamp:
672 # Apply gradient along the X axis.
673 self.amplifierAddXGradient(ampFullData, -1.0 * self.config.overscanScale,
674 1.0 * self.config.overscanScale)
675
676 if self.config.doAddSerialOverscanRamp:
677 # Apply the gradient along the Y axis.
678 self.amplifierAddYGradient(ampFullData, -1.0 * self.config.overscanScale,
679 1.0 * self.config.overscanScale)
680
681 # 9. Add non-linearity (electron) to amplifier
682 # (imaging + overscan).
683 if self.config.doAddHighSignalNonlinearity:
684 # The linearizer coefficients come from makeLinearizer().
685 if linearizer.linearityType[amp.getName()] != "Spline":
686 raise RuntimeError("IsrMockLSST only supports spline non-linearity.")
687
688 coeffs = linearizer.linearityCoeffs[amp.getName()]
689 centers, values = np.split(coeffs, 2)
690
691 # This is an application of high signal non-linearity, so we
692 # set the lower values to 0.0 (this cut is arbitrary).
693 values[centers < self.config.highSignalNonlinearityThreshold] = 0.0
694
695 # The linearizer is units of adu, so convert to electron
696 values *= self.config.gainDict[amp.getName()]
697
698 # Note that the linearity spline is in "overscan subtracted"
699 # units so needs to be applied without the clock-injected
700 # offset.
702 ampFullData,
703 centers,
704 values,
705 self.config.clockInjectedOffsetLevel if self.config.doAddClockInjectedOffset else 0.0,
706 )
707
708 # 10. Add read noise (electron) to the amplifier
709 # (imaging + overscan).
710 # Unsure if this should be before or after crosstalk.
711 # Probably some of both; hopefully doesn't matter.
712 if not self.config.calibMode:
713 # Add read noise to the imaging region.
715 ampImageData,
716 0.0,
717 self.config.readNoise,
718 rng=rngReadNoise,
719 )
720
721 # If not trimmed, add to the overscan regions.
722 if not self.config.isTrimmed:
723 parallelOverscanBBox = amp.getRawParallelOverscanBBox()
724 parallelOverscanData = exposure.image[parallelOverscanBBox]
725
726 serialOverscanBBox = self.getFullSerialOverscanBBox(amp)
727 serialOverscanData = exposure.image[serialOverscanBBox]
728
729 # Add read noise of mean 0
730 # to the parallel and serial overscan regions.
732 parallelOverscanData,
733 0.0,
734 self.config.readNoise,
735 rng=rngOverscan,
736 )
738 serialOverscanData,
739 0.0,
740 self.config.readNoise,
741 rng=rngOverscan,
742 )
743
744 # 7b. Add bad column to the parallel overscan region.
745 if self.config.doAddBadParallelOverscanColumn and not self.config.isTrimmed:
746 # We want to place this right above the defect, to simulate
747 # bleeding into the parallel overscan region.
748 amp = exposure.getDetector()[2]
749 parBBox = amp.getRawParallelOverscanBBox()
750 bboxBad = geom.Box2I(
751 corner=geom.Point2I(50, parBBox.getMinY()),
752 dimensions=geom.Extent2I(1, parBBox.getHeight()),
753 )
754 exposure[bboxBad].image.array[:, :] += self.config.badParallelOverscanColumnLevel
755
756 if self.config.doAddBadParallelOverscanColumnNeighbors:
757 for neighbor in [49, 51]:
758 bboxBad = geom.Box2I(
759 corner=geom.Point2I(neighbor, parBBox.getMinY()),
760 dimensions=geom.Extent2I(1, parBBox.getHeight()),
761 )
762 exposure[bboxBad].image.array[:, :] += self.config.badParallelOverscanColumnNeighborsLevel
763
764 # 11. Add crosstalk (electron) to all the amplifiers
765 # (imaging + overscan).
766 if self.config.doAddCrosstalk:
767 ctCalib = CrosstalkCalib()
768 # We use the regular subtractCrosstalk code but with a negative
769 # sign on the crosstalk coefficients so it adds instead of
770 # subtracts. We only apply the signal plane (ignoreVariance,
771 # subtrahendMasking) with a very large pixel to mask to ensure
772 # no crosstalk mask bits are set.
773 ctCalib.subtractCrosstalk(
774 exposure,
775 crosstalkCoeffs=-1*self.crosstalkCoeffs,
776 doSubtrahendMasking=True,
777 minPixelToMask=1e100,
778 ignoreVariance=True,
779 fullAmplifier=True,
780 )
781
782 for amp in exposure.getDetector():
783 # Get image bbox and data (again).
784 bbox = None
785 if self.config.isTrimmed:
786 bbox = amp.getBBox()
787 bboxFull = bbox
788 else:
789 bbox = amp.getRawDataBBox()
790 bboxFull = amp.getRawBBox()
791
792 # This is the image data (excluding pre/overscans).
793 ampImageData = exposure.image[bbox]
794 # This is the full data (including pre/overscans if untrimmed).
795 ampFullData = exposure.image[bboxFull]
796
797 # 12. Gain un-normalize (from electron to floating point adu)
798 if self.config.doApplyGain:
799 gain = self.config.gainDict.get(amp.getName(), self.config.gain)
800 self.applyGain(ampFullData, gain)
801
802 # 13. Add overall bias level (adu) to the amplifier
803 # (imaging + overscan)
804 if self.config.doAddBias:
805 self.addBiasLevel(ampFullData, self.config.biasLevel)
806
807 # 14. Round/Truncate to integers (adu)
808 if self.config.doRoundAdu:
809 self.roundADU(ampFullData)
810
811 # Add units metadata to calibrations.
812 if self.config.calibMode:
813 if self.config.doApplyGain:
814 exposure.metadata["LSST ISR UNITS"] = "adu"
815 else:
816 exposure.metadata["LSST ISR UNITS"] = "electron"
817
818 # Add a variance plane appropriate for a calibration frame.
819 # We take the absolute value for biases which have no signal.
820 exposure.variance.array[:, :] = np.abs(np.median(exposure.image.array)/10.)
821
822 if self.config.doGenerateAmpDict:
823 expDict = dict()
824 for amp in exposure.getDetector():
825 expDict[amp.getName()] = exposure
826 return expDict
827 else:
828 return exposure
829
830 def addBiasLevel(self, ampData, biasLevel):
831 """Add bias level to an amplifier's image data.
832
833 Parameters
834 ----------
835 ampData : `lsst.afw.image.ImageF`
836 Amplifier image to operate on.
837 biasLevel : `float`
838 Bias level to be added to the image.
839 """
840 ampArr = ampData.array
841 ampArr[:] = ampArr[:] + biasLevel
842
843 def makeDefectList(self, isTrimmed=True):
844 """Generate a simple defect list.
845
846 Parameters
847 ----------
848 isTrimmed : `bool`, optional
849 Return defects in trimmed coordinates?
850
851 Returns
852 -------
853 defectList : `lsst.meas.algorithms.Defects`
854 Simulated defect list
855 """
856 defectBoxesUntrimmed = [
858 geom.Point2I(50, 118),
859 geom.Extent2I(1, 51),
860 ),
861 ]
862
863 if not isTrimmed:
864 return Defects(defectBoxesUntrimmed)
865
866 # If trimmed, we need to convert.
867 tempExp = self.getExposure(isTrimmed=False)
868 tempExp.image.array[:, :] = 0.0
869 for bbox in defectBoxesUntrimmed:
870 tempExp.image[bbox] = 1.0
871
872 assembledExp = self.assembleCcd.assembleCcd(tempExp)
873
874 # Use thresholding code to find defect footprints/boxes.
875 threshold = afwDetection.createThreshold(1.0, "value", polarity=True)
876 footprintSet = afwDetection.FootprintSet(assembledExp.image, threshold)
877
878 return Defects.fromFootprintList(footprintSet.getFootprints())
879
880 def makeBfKernel(self):
881 """Generate a simple simulated brighter-fatter kernel.
882 Returns
883 -------
884 kernel : `lsst.ip.isr.BrighterFatterKernel`
885 Simulated brighter-fatter kernel.
886 """
887 bfkArray = super().makeBfKernel()
888 bfKernelObject = BrighterFatterKernel()
889 bfKernelObject.level = 'AMP'
890 bfKernelObject.gain = self.config.gainDict
891
892 for amp in self.getExposure().getDetector():
893 # Kernel must be in (y,x) orientation
894 bfKernelObject.ampKernels[amp.getName()] = bfkArray.T
895 bfKernelObject.valid[amp.getName()] = True
896
897 return bfKernelObject
898
900 """Generate a CTI calibration.
901
902 Returns
903 -------
904 cti : `lsst.ip.isr.deferredCharge.DeferredChargeCalib`
905 Simulated deferred charge calibration.
906 """
907
908 metadataDict = {'metadata': PropertyList()}
909 metadataDict['metadata'].add(name="OBSTYPE", value="CTI")
910 metadataDict['metadata'].add(name="CALIBCLS",
911 value="lsst.ip.isr.deferredCharge.DeferredChargeCalib")
912 self.ctiCalibDict = {**metadataDict, **self.ctiCalibDict}
913 deferredChargeCalib = DeferredChargeCalib()
914 self.cti = deferredChargeCalib.fromDict(self.ctiCalibDict)
915
916 return self.cti
917
918 def amplifierAddBrighterFatter(self, ampImageData, rng, bfStrength, nRecalc):
919 """Add brighter fatter effect and/or diffusion to the image.
920 Parameters
921 ----------
922 ampImageData : `lsst.afw.image.ImageF`
923 Amplifier image to operate on.
924 rng : `galsim.BaseDeviate`
925 Random number generator.
926 bfStrength : `float`
927 Scaling parameter of the brighter fatter effect (nominally = 1)
928 nRecalc: 'int'
929 The number of electrons to accumulate before recalculating the
930 distortion of the pixel shapes.
931 """
932
933 incidentImage = galsim.Image(ampImageData.array, scale=1)
934 measuredImage = galsim.ImageF(
935 ampImageData.array.shape[1],
936 ampImageData.array.shape[0],
937 scale=1,
938 )
939 photons = galsim.PhotonArray.makeFromImage(incidentImage)
940
941 sensorModel = galsim.SiliconSensor(
942 strength=bfStrength,
943 rng=rng,
944 diffusion_factor=0.0,
945 nrecalc=nRecalc,
946 )
947
948 totalFluxAdded = sensorModel.accumulate(photons, measuredImage)
949 ampImageData.array = measuredImage.array
950
951 return totalFluxAdded
952
953 def amplifierAddDeferredCharge(self, exposure, amp):
954 """Add serial CTI to the amplifier data.
955
956 Parameters
957 ----------
958 exposure : `lsst.afw.image.ExposureF`
959 The exposure object containing the amplifier
960 to apply deferred charge to.
961 amp : `lsst.afw.image.Amplifier`
962 The amplifier object (contains geometry info).
963 """
964 # Get the amplifier's geometry parameters.
965 # When adding deferred charge, we have already assured that
966 # isTrimmed is False. Therefore we want to make sure that we
967 # get the RawDataBBox.
968 readoutCorner = amp.getReadoutCorner()
969 prescanWidth = amp.getRawHorizontalPrescanBBox().getWidth()
970 serialOverscanWidth = amp.getRawHorizontalOverscanBBox().getWidth()
971 parallelOverscanWidth = amp.getRawVerticalOverscanBBox().getHeight()
972 bboxFreeCharge = amp.getRawDataBBox()
973 bboxFreeCharge = bboxFreeCharge.expandedTo(amp.getRawHorizontalOverscanBBox())
974 bboxFreeCharge = bboxFreeCharge.expandedTo(amp.getRawHorizontalPrescanBBox())
975 bboxFreeCharge = bboxFreeCharge.expandedTo(amp.getRawVerticalOverscanBBox())
976
977 ampFreeChargeData = exposure.image[bboxFreeCharge]
978 ampImageData = exposure.image[amp.getRawDataBBox()]
979
980 # Get the deferred charge parameters for this amplifier.
981 cti = self.deferredChargeCalib.globalCti[amp.getName()]
982 traps = self.deferredChargeCalib.serialTraps[amp.getName()]
983 driftScale = self.deferredChargeCalib.driftScale[amp.getName()]
984 decayTime = self.deferredChargeCalib.decayTime[amp.getName()]
985
986 # Create a fake amplifier object that contains some deferred charge
987 # paramters.
988 floatingOutputAmplifier = FloatingOutputAmplifier(
989 gain=1.0, # Everything is already in electrons.
990 scale=driftScale,
991 decay_time=decayTime,
992 noise=0.0,
993 offset=0.0,
994 )
995
996 def flipImage(arr, readoutCorner):
997 # Flip an array so that the readout corner is in
998 # the lower left.
999 if readoutCorner == ReadoutCorner.LR:
1000 return np.fliplr(arr)
1001 elif readoutCorner == ReadoutCorner.UR:
1002 return np.fliplr(np.flipud(arr))
1003 elif readoutCorner == ReadoutCorner.UL:
1004 return np.flipud(arr)
1005 else:
1006 pass
1007
1008 return arr
1009
1010 # The algorithm expects that the readout corner is in
1011 # the lower left corner. Flip it to be so:
1012 imageData = ampImageData.array
1013 imageData = flipImage(imageData, readoutCorner)
1014
1015 # Simulate the amplifier.
1016 ampSim = SegmentSimulator(
1017 imarr=imageData,
1018 prescan_width=prescanWidth,
1019 output_amplifier=floatingOutputAmplifier,
1020 cti=cti,
1021 traps=traps,
1022 )
1023
1024 # Simulate deferred charge!
1025 # Note that the readout() method uses the image region data and the
1026 # overscan dimensions provided as input parameters. It then creates
1027 # overscan nd adds it to the image data to create the raw image.
1028 result = ampSim.readout(
1029 serial_overscan_width=serialOverscanWidth,
1030 parallel_overscan_width=parallelOverscanWidth,
1031 )
1032
1033 # Flip the image back to the original orientation.
1034 result = flipImage(result, readoutCorner)
1035
1036 # Set the image with the deferred charge added.
1037 ampFreeChargeData.array[:, :] = result
1038
1040 # docstring inherited.
1041
1042 # The linearizer has units of adu.
1043 nNodes = 10
1044 # Set this to just above the mock saturation (adu)
1045 maxADU = 101_000
1046 nonLinSplineNodes = np.linspace(0, maxADU, nNodes)
1047 # These values come from cp_pipe/tests/test_linearity.py and
1048 # are based on a test fit to LSSTCam data, run 7193D, detector 22,
1049 # amp C00.
1050 nonLinSplineValues = np.array(
1051 [0.0, -8.87, 1.46, 1.69, -6.92, -68.23, -78.01, -11.56, 80.26, 185.01]
1052 )
1053
1054 if self.config.doAddHighSignalNonlinearity and not self.config.doAddLowSignalNonlinearity:
1055 nonLinSplineValues[nonLinSplineNodes < self.config.highSignalNonlinearityThreshold] = 0.0
1056 elif self.config.doAddLowSignalNonlinearity:
1057 raise NotImplementedError("Low signal non-linearity is not implemented.")
1058
1059 exp = self.getExposure()
1060 detector = exp.getDetector()
1061
1062 linearizer = Linearizer(detector=detector)
1063 linearizer.updateMetadataFromExposures([exp])
1064
1065 # We need to set override by hand because we are constructing a
1066 # linearizer manually and not from a serialized object.
1067 linearizer.override = True
1068 linearizer.hasLinearity = True
1069 linearizer.validate()
1070 linearizer.updateMetadata(camera=self.getCamera(), detector=detector, filterName='NONE')
1071 linearizer.updateMetadata(setDate=True, setCalibId=True)
1072
1073 for amp in detector:
1074 ampName = amp.getName()
1075 linearizer.linearityType[ampName] = "Spline"
1076 linearizer.linearityCoeffs[ampName] = np.concatenate([nonLinSplineNodes, nonLinSplineValues])
1077 # We need to specify the raw bbox here.
1078 linearizer.linearityBBox[ampName] = amp.getRawBBox()
1079
1080 return linearizer
1081
1082 def amplifierAddNonlinearity(self, ampData, centers, values, offset):
1083 """Add non-linearity to amplifier data.
1084
1085 Parameters
1086 ----------
1087 ampData : `lsst.afw.image.ImageF`
1088 Amplifier image to operate on.
1089 centers : `np.ndarray`
1090 Spline nodes.
1091 values : `np.ndarray`
1092 Spline values.
1093 offset : `float`
1094 Offset zero-point between linearizer (internal vs external).
1095 """
1096 # I'm not sure what to do about negative values...
1097
1098 # Note that we are using the afw AKIMA_SPLINE to offset the
1099 # data but using the equivalent but faster scipy Akima1DInterpolator to
1100 # correct the data.
1102 centers,
1103 values,
1104 afwMath.stringToInterpStyle("AKIMA_SPLINE"),
1105 )
1106
1107 delta = np.asarray(spl.interpolate(ampData.array.ravel() - offset))
1108
1109 ampData.array[:, :] += delta.reshape(ampData.array.shape)
1110
1111 def amplifierMultiplyFlat(self, amp, ampData, fracDrop, u0=100.0, v0=100.0):
1112 """Multiply an amplifier's image data by a flat-like pattern.
1113
1114 Parameters
1115 ----------
1116 amp : `lsst.afw.ampInfo.AmpInfoRecord`
1117 Amplifier to operate on. Needed for amp<->exp coordinate
1118 transforms.
1119 ampData : `lsst.afw.image.ImageF`
1120 Amplifier image to operate on.
1121 fracDrop : `float`
1122 Fractional drop from center to edge of detector along x-axis.
1123 u0 : `float`
1124 Peak location in detector coordinates.
1125 v0 : `float`
1126 Peak location in detector coordinates.
1127 """
1128 if fracDrop >= 1.0:
1129 raise RuntimeError("Flat fractional drop cannot be greater than 1.0")
1130
1131 sigma = u0 / np.sqrt(2.0 * fracDrop)
1132
1133 for x in range(0, ampData.getDimensions().getX()):
1134 for y in range(0, ampData.getDimensions().getY()):
1135 (u, v) = self.localCoordToExpCoord(amp, x, y)
1136 f = np.exp(-0.5 * ((u - u0)**2 + (v - v0)**2) / sigma**2)
1137 ampData.array[y][x] = (ampData.array[y][x] * f)
1138
1139 def applyGain(self, ampData, gain):
1140 """Apply gain to the amplifier's data.
1141 This method divides the data by the gain
1142 because the mocks need to convert the data in electron to adu,
1143 so it does the inverse operation to applyGains in isrFunctions.
1144
1145 Parameters
1146 ----------
1147 ampData : `lsst.afw.image.ImageF`
1148 Amplifier image to operate on.
1149 gain : `float`
1150 Gain value in electron/adu.
1151 """
1152 ampArr = ampData.array
1153 ampArr[:] = ampArr[:] / gain
1154
1155 def roundADU(self, ampData):
1156 """Round adu to nearest integer.
1157
1158 Parameters
1159 ----------
1160 ampData : `lsst.afw.image.ImageF`
1161 Amplifier image to operate on.
1162 """
1163 ampArr = ampData.array
1164 ampArr[:] = np.around(ampArr)
1165
1166 def amplifierAddXGradient(self, ampData, start, end):
1167 """Add a x-axis linear gradient to an amplifier's image data.
1168
1169 This method operates in the amplifier coordinate frame.
1170
1171 Parameters
1172 ----------
1173 ampData : `lsst.afw.image.ImageF`
1174 Amplifier image to operate on.
1175 start : `float`
1176 Start value of the gradient (at x=0).
1177 end : `float`
1178 End value of the gradient (at x=xmax).
1179 """
1180 nPixX = ampData.getDimensions().getX()
1181 ampArr = ampData.array
1182 ampArr[:] = ampArr[:] + (np.interp(range(nPixX), (0, nPixX - 1), (start, end)).reshape(1, nPixX)
1183 + np.zeros(ampData.getDimensions()).transpose())
1184
1186 """Get the full serial overscan bounding box from an amplifier.
1187
1188 This includes the serial/parallel overscan region.
1189
1190 Parameters
1191 ----------
1192 amp : `lsst.afw.ampInfo.AmpInfoRecord`
1193 Amplifier to operate on.
1194
1195 Returns
1196 -------
1197 bbox : `lsst.geom.Box2I`
1198 """
1199 # This only works for untrimmed data.
1200 bbox = amp.getRawDataBBox()
1201
1202 parallelOverscanBBox = amp.getRawParallelOverscanBBox()
1203 grownImageBBox = bbox.expandedTo(parallelOverscanBBox)
1204
1205 serialOverscanBBox = amp.getRawSerialOverscanBBox()
1206 # Extend the serial overscan bbox to include corners
1207 serialOverscanBBox = geom.Box2I(
1208 geom.Point2I(serialOverscanBBox.getMinX(),
1209 grownImageBBox.getMinY()),
1210 geom.Extent2I(serialOverscanBBox.getWidth(),
1211 grownImageBBox.getHeight()))
1212
1213 return serialOverscanBBox
1214
1215
1217 """Generate a raw exposure suitable for ISR.
1218 """
1219 def __init__(self, **kwargs):
1220 super().__init__(**kwargs)
1221 self.config.isTrimmed = False
1222 self.config.doGenerateImage = True
1223 self.config.doGenerateAmpDict = False
1224
1225 # Add astro effects
1226 self.config.doAddSky = True
1227 self.config.doAddSource = True
1228
1229 # Add optical effects
1230 self.config.doAddFringe = True
1231
1232 # Add instrument effects
1233 self.config.doAddParallelOverscanRamp = True
1234 self.config.doAddSerialOverscanRamp = True
1235 self.config.doAddCrosstalk = True
1236 self.config.doAddBias = True
1237 self.config.doAddDark = True
1238
1239 self.config.doAddFlat = True
1240
1241
1243 """Generate a trimmed raw exposure.
1244 """
1245 def __init__(self, **kwargs):
1246 super().__init__(**kwargs)
1247 self.config.isTrimmed = True
1248 self.config.doAddParallelOverscanRamp = False
1249 self.config.doAddSerialOverscanRamp = False
1250
1251
1253 """Generate a trimmed raw exposure.
1254
1255 This represents a "truth" image that can be compared to a
1256 post-ISR cleaned image.
1257 """
1258 def __init__(self, **kwargs):
1259 super().__init__(**kwargs)
1260 self.config.isTrimmed = True
1261 self.config.doGenerateImage = True
1262
1263 self.config.doAddSky = True
1264 self.config.doAddSource = True
1265
1266 self.config.doAddFringe = True
1267
1268 self.config.doAddParallelOverscanRamp = False
1269 self.config.doAddSerialOverscanRamp = False
1270 self.config.doAddCrosstalk = False
1271 self.config.doAddBias = False
1272 self.config.doAdd2DBias = False
1273 self.config.doAddDark = False
1274 self.config.doApplyGain = False
1275 self.config.doAddFlat = False
1276 self.config.doAddClockInjectedOffset = False
1277
1278 self.config.biasLevel = 0.0
1279 # Assume combined calibrations are made with 16 inputs.
1280 self.config.readNoise *= 0.25
1281
1282 self.config.doRoundAdu = False
1283
1284
1286 """Parent class for those that make reference calibrations.
1287 """
1288 def __init__(self, **kwargs):
1289 # If we want the calibration in adu units, we need to apply
1290 # the gain. Default is electron units, so do not apply the gain.
1291 doApplyGain = kwargs.pop("adu", False)
1292
1293 super().__init__(**kwargs)
1294 self.config.isTrimmed = True
1295 self.config.doGenerateImage = True
1296
1297 self.config.calibMode = True
1298
1299 self.config.doAddSky = False
1300 self.config.doAddSource = False
1301
1302 self.config.doAddFringe = False
1303
1304 self.config.doAddParallelOverscanRamp = False
1305 self.config.doAddSerialOverscanRamp = False
1306 self.config.doAddCrosstalk = False
1307 self.config.doAddBias = False
1308 self.config.doAdd2DBias = False
1309 self.config.doAddDark = False
1310 self.config.doApplyGain = doApplyGain
1311 self.config.doAddFlat = False
1312 self.config.doAddClockInjectedOffset = False
1313
1314 # Reference calibrations are not integerized.
1315 self.config.doRoundAdu = False
1316
1317
1318# Classes to generate calibration products mocks.
1320 """Simulated reference dark calibration.
1321 """
1322 def __init__(self, **kwargs):
1323 super().__init__(**kwargs)
1324 self.config.doAddDark = True
1325 self.config.darkTime = 1.0
1326
1327
1329 """Simulated combined bias calibration.
1330 """
1331 def __init__(self, **kwargs):
1332 super().__init__(**kwargs)
1333 # This is a "2D bias residual" frame which has only
1334 # the 2D bias in it.
1335 self.config.doAdd2DBias = True
1336
1337
1339 """Simulated reference flat calibration.
1340 """
1341 def __init__(self, **kwargs):
1342 super().__init__(**kwargs)
1343 self.config.doAddFlat = True
1344
1345
1347 """Simulated reference fringe calibration.
1348 """
1349 def __init__(self, **kwargs):
1350 super().__init__(**kwargs)
1351 self.config.doAddFringe = True
1352
1353
1355 """Simulated brighter-fatter kernel.
1356 """
1357 def __init__(self, **kwargs):
1358 super().__init__(**kwargs)
1359 self.config.doGenerateImage = False
1360 self.config.doGenerateData = True
1361
1362 self.config.doBrighterFatter = True
1363 self.config.doDefects = False
1364 self.config.doCrosstalkCoeffs = False
1365 self.config.doTransmissionCurve = False
1366 self.config.doLinearizer = False
1367
1368
1370 """Simulated deferred charge calibration.
1371 """
1372 def __init__(self, **kwargs):
1373 super().__init__(**kwargs)
1374 self.config.doGenerateImage = False
1375 self.config.doGenerateData = True
1376 self.config.doDeferredCharge = True
1377 self.config.doDefects = False
1378 self.config.doCrosstalkCoeffs = False
1379 self.config.doTransmissionCurve = False
1380
1381
1383 """Simulated defect list.
1384 """
1385 def __init__(self, **kwargs):
1386 super().__init__(**kwargs)
1387 self.config.doGenerateImage = False
1388 self.config.doGenerateData = True
1389
1390 self.config.doBrighterFatter = False
1391 self.config.doDefects = True
1392 self.config.doCrosstalkCoeffs = False
1393 self.config.doTransmissionCurve = False
1394 self.config.doLinearizer = False
1395
1396
1398 """Simulated crosstalk coefficient matrix.
1399 """
1400 def __init__(self, **kwargs):
1401 super().__init__(**kwargs)
1402 self.config.doGenerateImage = False
1403 self.config.doGenerateData = True
1404
1405 self.config.doBrighterFatter = False
1406 self.config.doDefects = False
1407 self.config.doCrosstalkCoeffs = True
1408 self.config.doTransmissionCurve = False
1409 self.config.doLinearizer = False
1410
1411
1413 """Simulated linearizer.
1414 """
1415 def __init__(self, **kwargs):
1416 super().__init__(**kwargs)
1417 self.config.doGenerateImage = False
1418 self.config.doGenerateData = True
1419
1420 self.config.doBrighterFatter = False
1421 self.config.doDefects = False
1422 self.config.doCrosstalkCoeffs = False
1423 self.config.doTransmissionCurve = False
1424 self.config.doLinearizer = True
1425
1426
1428 """Simulated transmission curve.
1429 """
1430 def __init__(self, **kwargs):
1431 super().__init__(**kwargs)
1432 self.config.doGenerateImage = False
1433 self.config.doGenerateData = True
1434
1435 self.config.doBrighterFatter = False
1436 self.config.doDefects = False
1437 self.config.doCrosstalkCoeffs = False
1438 self.config.doTransmissionCurve = True
1439 self.config.doLinearizer = False
Class for storing ordered metadata with comments.
An integer coordinate rectangle.
Definition Box.h:55
localCoordToExpCoord(self, ampData, x, y)
Definition isrMock.py:731
amplifierAddNoise(self, ampData, mean, sigma, rng=None)
Definition isrMock.py:762
amplifierAddSource(self, ampData, scale, x0, y0)
Definition isrMock.py:806
amplifierMultiplyFlat(self, amp, ampData, fracDrop, u0=100.0, v0=100.0)
Definition isrMock.py:860
amplifierAddYGradient(self, ampData, start, end)
Definition isrMock.py:787
getCamera(self, isForAssembly=False)
Definition isrMock.py:555
getExposure(self, isTrimmed=None)
Definition isrMock.py:582
amplifierAddFringe(self, amp, ampData, scale, x0=100, y0=0)
Definition isrMock.py:828
addBiasLevel(self, ampData, biasLevel)
amplifierAddDeferredCharge(self, exposure, amp)
makeDefectList(self, isTrimmed=True)
amplifierAddNonlinearity(self, ampData, centers, values, offset)
amplifierAddBrighterFatter(self, ampImageData, rng, bfStrength, nRecalc)
amplifierAddXGradient(self, ampData, start, end)
amplifierMultiplyFlat(self, amp, ampData, fracDrop, u0=100.0, v0=100.0)
Interpolate::Style stringToInterpStyle(std::string const &style)
Conversion function to switch a string to an Interpolate::Style.
std::shared_ptr< Interpolate > makeInterpolate(std::vector< double > const &x, std::vector< double > const &y, Interpolate::Style const style=Interpolate::AKIMA_SPLINE)
A factory function to make Interpolate objects.