LSST Applications g0f08755f38+c89d42e150,g1635faa6d4+b6cf076a36,g1653933729+a8ce1bb630,g1a0ca8cf93+4c08b13bf7,g28da252d5a+f33f8200ef,g29321ee8c0+0187be18b1,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+e740673f1a,g5fbc88fb19+17cd334064,g7642f7d749+c89d42e150,g781aacb6e4+a8ce1bb630,g80478fca09+f8b2ab54e1,g82479be7b0+e2bd23ab8b,g858d7b2824+c89d42e150,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+065360aec4,gacf8899fa4+9553554aa7,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gbd46683f8f+ac57cbb13d,gc28159a63d+9634bc57db,gcf0d15dbbd+e37acf7834,gda3e153d99+c89d42e150,gda6a2b7d83+e37acf7834,gdaeeff99f8+1711a396fd,ge2409df99d+cb1e6652d6,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+02b11634a5,w.2024.45
LSST Data Management Base Package
Loading...
Searching...
No Matches
measure.py
Go to the documentation of this file.
1# This file is part of scarlet_lite.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22from typing import cast
23
24import numpy as np
25
26from .bbox import Box
27from .image import Image
28
29
31 images: Image,
32 variance: Image,
33 psfs: np.ndarray,
34 center: tuple[int, int],
35) -> float:
36 """Calculate the signal to noise for a point source
37
38 This is done by weighting the image with the PSF in each band
39 and dividing by the PSF weighted variance.
40
41 Parameters
42 ----------
43 images:
44 The 3D (bands, y, x) image containing the data.
45 variance:
46 The variance of `images`.
47 psfs:
48 The PSF in each band.
49 center:
50 The center of the signal.
51
52 Returns
53 -------
54 snr:
55 The signal to noise of the source.
56 """
57 py = psfs.shape[1] // 2
58 px = psfs.shape[2] // 2
59 bbox = Box(psfs[0].shape, origin=(-py + center[0], -px + center[1]))
60 overlap = images.bbox & bbox
61 noise = variance[overlap].data
62 img = images[overlap].data
63 _psfs = Image(psfs, bands=images.bands, yx0=cast(tuple[int, int], bbox.origin))[overlap].data
64 numerator = img * _psfs
65 denominator = (_psfs * noise) * _psfs
66 return np.sum(numerator) / np.sqrt(np.sum(denominator))
A class to represent a 2-dimensional array of pixels.
Definition Image.h:51
float calculate_snr(Image images, Image variance, np.ndarray psfs, tuple[int, int] center)
Definition measure.py:35