LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
|
Functions | |
float | calculate_snr (Image images, Image variance, np.ndarray psfs, tuple[int, int] center) |
None | conserve_flux (blend, bool mask_footprint=True, Image|None images=None) |
float lsst.scarlet.lite.measure.calculate_snr | ( | Image | images, |
Image | variance, | ||
np.ndarray | psfs, | ||
tuple[int, int] | center ) |
Calculate the signal to noise for a point source This is done by weighting the image with the PSF in each band and dividing by the PSF weighted variance. Parameters ---------- images: The 3D (bands, y, x) image containing the data. variance: The variance of `images`. psfs: The PSF in each band. center: The center of the signal. Returns ------- snr: The signal to noise of the source.
Definition at line 30 of file measure.py.
None lsst.scarlet.lite.measure.conserve_flux | ( | blend, | |
bool | mask_footprint = True, | ||
Image | None | images = None ) |
Use the source models as templates to re-distribute flux from the data The source models are used as approximations to the data, which redistribute the flux in the data according to the ratio of the models for each source. There is no return value for this function, instead it adds (or modifies) a ``flux_weighted_image`` attribute to each the sources with the flux attributed to that source. Parameters ---------- blend: The blend that is being fit mask_footprint: Whether or not to apply a mask for pixels with zero weight.
Definition at line 69 of file measure.py.