Loading [MathJax]/extensions/tex2jax.js
LSST Applications g0f08755f38+05b4b46b2c,g1653933729+a905cd61c3,g168dd56ebc+a905cd61c3,g1a2382251a+526767c3b0,g20f6ffc8e0+05b4b46b2c,g217e2c1bcf+f8df405040,g28da252d5a+e530e4405a,g2bbee38e9b+e060cc3e60,g2bc492864f+e060cc3e60,g32e5bea42b+7044b77928,g347aa1857d+e060cc3e60,g35bb328faa+a905cd61c3,g3a166c0a6a+e060cc3e60,g3bd4b5ce2c+9af3f3d415,g3e281a1b8c+2bff41ced5,g3e8969e208+a905cd61c3,g414038480c+882f223820,g41af890bb2+f72d0f2eea,g43bc871e57+ad86a2d9e2,g78460c75b0+4ae99bb757,g80478fca09+8d821d1b28,g82479be7b0+ec26a56c2d,g858d7b2824+05b4b46b2c,g9125e01d80+a905cd61c3,ga5288a1d22+64e5455051,gb58c049af0+84d1b6ec45,gc28159a63d+e060cc3e60,gc5452a3dca+b82ec7cc4c,gcab2d0539d+01da5adb7a,gcf0d15dbbd+56822d21ae,gda6a2b7d83+56822d21ae,gdaeeff99f8+686ef0dd99,ge79ae78c31+e060cc3e60,gef2f8181fd+f2c81e61ee,gf0baf85859+f9edac6842,gf1e97e5484+3a635bd7af,gfa517265be+05b4b46b2c,gfa999e8aa5+d85414070d,w.2025.01
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
Classes | Variables
lsst.fgcmcal.fgcmFitCycle Namespace Reference

Classes

class  FgcmFitCycleConnections
 

Variables

int MULTIPLE_CYCLES_MAX = 10
 
 camera : `lsst.afw.cameraGeom.Camera`
 
 handleDict : `dict`
 
 butlerQC : `lsst.pipe.base.QuantumContext`, optional
 
 plotHandleDict : `dict` [`str`, `lsst.daf.butler.DatasetRef`], optional
 
 config : `lsst.pex.config.Config`, optional
 
 nCore : `int`, optional
 
 multiCycle : `bool`, optional
 
 fgcmDatasetDict : `dict`
 
 parCat : `lsst.afw.table.BaseCatalog`
 
 inParInfo : `numpy.ndarray`
 
 inParameters : `numpy.ndarray`
 
 inSuperStar : `numpy.array`
 
 fgcmFitCycle : `lsst.fgcm.FgcmFitCycle`
 
 parInfo : `numpy.ndarray`
 
 pars : `numpy.ndarray`
 
 parSuperStarFlat : `numpy.array`
 
 lutFilterNameString : `str`
 
 fitBandString : `str`
 
 parSchema : `afwTable.schema`
 
 flagStarSchema : `lsst.afw.table.Schema`
 
 flagStarStruct : `numpy.ndarray`
 
 flagStarCat : `lsst.afw.table.BaseCatalog`
 

Detailed Description

Perform a single fit cycle of FGCM.

This task runs a single "fit cycle" of fgcm.  Prior to running this task
one must run both fgcmMakeLut (to construct the atmosphere and instrumental
look-up-table) and fgcmBuildStars (to extract visits and star observations
for the global fit).

The fgcmFitCycle is meant to be run multiple times, and is tracked by the
'cycleNumber'.  After each run of the fit cycle, diagnostic plots should
be inspected to set parameters for outlier rejection on the following
cycle.  Please see the fgcmcal Cookbook for details.

Variable Documentation

◆ butlerQC

lsst.fgcmcal.fgcmFitCycle.butlerQC : `lsst.pipe.base.QuantumContext`, optional

Definition at line 1325 of file fgcmFitCycle.py.

◆ camera

lsst.fgcmcal.fgcmFitCycle.camera : `lsst.afw.cameraGeom.Camera`
    doMultipleCycles = pexConfig.Field(
        doc="Run multiple fit cycles in one task",
        dtype=bool,
        default=False,
    )
    useParquetCatalogFormat = pexConfig.Field(
        doc="Use parquet catalog format?",
        dtype=bool,
        default=True,
    )
    multipleCyclesFinalCycleNumber = pexConfig.RangeField(
        doc=("Final cycle number in multiple cycle mode.  The initial cycle "
             "is 0, with limited parameters fit.  The next cycle is 1 with "
             "full parameter fit.  The final cycle is a clean-up with no "
             "parameters fit.  There will be a total of "
             "(multipleCycleFinalCycleNumber + 1) cycles run, and the final "
             "cycle number cannot be less than 2."),
        dtype=int,
        default=5,
        min=2,
        max=MULTIPLE_CYCLES_MAX,
        inclusiveMax=True,
    )
    bands = pexConfig.ListField(
        doc="Bands to run calibration",
        dtype=str,
        default=[],
    )
    fitBands = pexConfig.ListField(
        doc=("Bands to use in atmospheric fit. The bands not listed here will have "
             "the atmosphere constrained from the 'fitBands' on the same night. "
             "Must be a subset of `config.bands`"),
        dtype=str,
        default=[],
    )
    requiredBands = pexConfig.ListField(
        doc=("Bands that are required for a star to be considered a calibration star. "
             "Must be a subset of `config.bands`"),
        dtype=str,
        default=[],
    )
    physicalFilterMap = pexConfig.DictField(
        doc="Mapping from 'physicalFilter' to band.",
        keytype=str,
        itemtype=str,
        default={},
    )
    doReferenceCalibration = pexConfig.Field(
        doc="Use reference catalog as additional constraint on calibration",
        dtype=bool,
        default=True,
    )
    refStarSnMin = pexConfig.Field(
        doc="Reference star signal-to-noise minimum to use in calibration.  Set to <=0 for no cut.",
        dtype=float,
        default=50.0,
    )
    refStarOutlierNSig = pexConfig.Field(
        doc=("Number of sigma compared to average mag for reference star to be considered an outlier. "
             "Computed per-band, and if it is an outlier in any band it is rejected from fits."),
        dtype=float,
        default=4.0,
    )
    applyRefStarColorCuts = pexConfig.Field(
        doc=("Apply color cuts defined in ``starColorCuts`` to reference stars? "
             "These cuts are in addition to any cuts defined in ``refStarColorCuts``"),
        dtype=bool,
        default=True,
    )
    refStarMaxFracUse = pexConfig.Field(
        doc=("Maximum fraction of reference stars to use in the fit. Remainder will "
             "be used only for validation."),
        dtype=float,
        default=0.5,
    )
    useExposureReferenceOffset = pexConfig.Field(
        doc=("Use per-exposure (visit) offsets between calibrated stars and reference stars "
             "for final zeropoints? This may help uniformity for disjoint surveys."),
        dtype=bool,
        default=False,
    )
    nCore = pexConfig.Field(
        doc="Number of cores to use",
        dtype=int,
        default=4,
        deprecated="Number of cores is deprecated as a config, and will be removed after v27. "
                   "Please use ``pipetask run --cores-per-quantum`` instead.",
    )
    nStarPerRun = pexConfig.Field(
        doc="Number of stars to run in each chunk",
        dtype=int,
        default=200000,
    )
    nExpPerRun = pexConfig.Field(
        doc="Number of exposures to run in each chunk",
        dtype=int,
        default=1000,
    )
    reserveFraction = pexConfig.Field(
        doc="Fraction of stars to reserve for testing",
        dtype=float,
        default=0.1,
    )
    freezeStdAtmosphere = pexConfig.Field(
        doc="Freeze atmosphere parameters to standard (for testing)",
        dtype=bool,
        default=False,
    )
    precomputeSuperStarInitialCycle = pexConfig.Field(
        doc="Precompute superstar flat for initial cycle",
        dtype=bool,
        default=False,
    )
    superStarSubCcdDict = pexConfig.DictField(
        doc=("Per-band specification on whether to compute superstar flat on sub-ccd scale. "
             "Must have one entry per band."),
        keytype=str,
        itemtype=bool,
        default={},
    )
    superStarSubCcdChebyshevOrder = pexConfig.Field(
        doc=("Order of the 2D chebyshev polynomials for sub-ccd superstar fit. "
             "Global default is first-order polynomials, and should be overridden "
             "on a camera-by-camera basis depending on the ISR."),
        dtype=int,
        default=1,
    )
    superStarSubCcdTriangular = pexConfig.Field(
        doc=("Should the sub-ccd superstar chebyshev matrix be triangular to "
             "suppress high-order cross terms?"),
        dtype=bool,
        default=False,
    )
    superStarSigmaClip = pexConfig.Field(
        doc="Number of sigma to clip outliers when selecting for superstar flats",
        dtype=float,
        default=5.0,
    )
    superStarPlotCcdResiduals = pexConfig.Field(
        doc="If plotting is enabled, should per-detector residuals be plotted? "
            "This may produce a lot of output, and should be used only for "
            "debugging purposes.",
        dtype=bool,
        default=False,
    )
    focalPlaneSigmaClip = pexConfig.Field(
        doc="Number of sigma to clip outliers per focal-plane.",
        dtype=float,
        default=4.0,
    )
    ccdGraySubCcdDict = pexConfig.DictField(
        doc=("Per-band specification on whether to compute achromatic per-ccd residual "
             "('ccd gray') on a sub-ccd scale."),
        keytype=str,
        itemtype=bool,
        default={},
    )
    ccdGraySubCcdChebyshevOrder = pexConfig.Field(
        doc="Order of the 2D chebyshev polynomials for sub-ccd gray fit.",
        dtype=int,
        default=1,
    )
    ccdGraySubCcdTriangular = pexConfig.Field(
        doc=("Should the sub-ccd gray chebyshev matrix be triangular to "
             "suppress high-order cross terms?"),
        dtype=bool,
        default=True,
    )
    ccdGrayFocalPlaneDict = pexConfig.DictField(
        doc=("Per-band specification on whether to compute focal-plane residual "
             "('ccd gray') corrections."),
        keytype=str,
        itemtype=bool,
        default={},
    )
    ccdGrayFocalPlaneFitMinCcd = pexConfig.Field(
        doc=("Minimum number of 'good' CCDs required to perform focal-plane "
             "gray corrections.  If there are fewer good CCDs then the gray "
             "correction is computed per-ccd."),
        dtype=int,
        default=1,
    )
    ccdGrayFocalPlaneChebyshevOrder = pexConfig.Field(
        doc="Order of the 2D chebyshev polynomials for focal plane fit.",
        dtype=int,
        default=3,
    )
    cycleNumber = pexConfig.Field(
        doc=("FGCM fit cycle number.  This is automatically incremented after each run "
             "and stage of outlier rejection.  See cookbook for details."),
        dtype=int,
        default=None,
    )
    isFinalCycle = pexConfig.Field(
        doc=("Is this the final cycle of the fitting?  Will automatically compute final "
             "selection of stars and photometric exposures, and will output zeropoints "
             "and standard stars for use in fgcmOutputProducts"),
        dtype=bool,
        default=False,
    )
    maxIterBeforeFinalCycle = pexConfig.Field(
        doc=("Maximum fit iterations, prior to final cycle.  The number of iterations "
             "will always be 0 in the final cycle for cleanup and final selection."),
        dtype=int,
        default=50,
    )
    deltaMagBkgOffsetPercentile = pexConfig.Field(
        doc=("Percentile brightest stars on a visit/ccd to use to compute net "
             "offset from local background subtraction."),
        dtype=float,
        default=0.25,
    )
    deltaMagBkgPerCcd = pexConfig.Field(
        doc=("Compute net offset from local background subtraction per-ccd? "
             "Otherwise, use computation per visit."),
        dtype=bool,
        default=False,
    )
    utBoundary = pexConfig.Field(
        doc="Boundary (in UTC) from day-to-day",
        dtype=float,
        default=None,
    )
    washMjds = pexConfig.ListField(
        doc="Mirror wash MJDs",
        dtype=float,
        default=(0.0,),
    )
    epochMjds = pexConfig.ListField(
        doc="Epoch boundaries in MJD",
        dtype=float,
        default=(0.0,),
    )
    minObsPerBand = pexConfig.Field(
        doc="Minimum good observations per band",
        dtype=int,
        default=2,
    )
    # TODO: When DM-16511 is done, it will be possible to get the
    # telescope latitude directly from the camera.
    latitude = pexConfig.Field(
        doc="Observatory latitude",
        dtype=float,
        default=None,
    )
    mirrorArea = pexConfig.Field(
        doc="Mirror area (square meters) of telescope.  If not set, will "
            "try to estimate from camera.telescopeDiameter.",
        dtype=float,
        default=None,
        optional=True,
    )
    cameraGain = pexConfig.Field(
        doc="Average camera gain. If not set, will use the median of the "
            "camera model/detector/amplifier gains.",
        dtype=float,
        default=None,
        optional=True,
    )
    defaultCameraOrientation = pexConfig.Field(
        doc="Default camera orientation for QA plots.",
        dtype=float,
        default=None,
    )
    brightObsGrayMax = pexConfig.Field(
        doc="Maximum gray extinction to be considered bright observation",
        dtype=float,
        default=0.15,
    )
    minStarPerCcd = pexConfig.Field(
        doc=("Minimum number of good stars per CCD to be used in calibration fit. "
             "CCDs with fewer stars will have their calibration estimated from other "
             "CCDs in the same visit, with zeropoint error increased accordingly."),
        dtype=int,
        default=5,
    )
    minCcdPerExp = pexConfig.Field(
        doc=("Minimum number of good CCDs per exposure/visit to be used in calibration fit. "
             "Visits with fewer good CCDs will have CCD zeropoints estimated where possible."),
        dtype=int,
        default=5,
    )
    maxCcdGrayErr = pexConfig.Field(
        doc="Maximum error on CCD gray offset to be considered photometric",
        dtype=float,
        default=0.05,
    )
    minStarPerExp = pexConfig.Field(
        doc=("Minimum number of good stars per exposure/visit to be used in calibration fit. "
             "Visits with fewer good stars will have CCD zeropoints estimated where possible."),
        dtype=int,
        default=600,
    )
    minExpPerNight = pexConfig.Field(
        doc="Minimum number of good exposures/visits to consider a partly photometric night",
        dtype=int,
        default=10,
    )
    expGrayInitialCut = pexConfig.Field(
        doc=("Maximum exposure/visit gray value for initial selection of possible photometric "
             "observations."),
        dtype=float,
        default=-0.25,
    )
    expFwhmCutDict = pexConfig.DictField(
        doc=("Per-band specification on maximum exposure FWHM (arcseconds) that will "
             "be considered for the model fit. Exposures with median FWHM larger "
             "than this threshold will get zeropoints based on matching to good "
             "stars."),
        keytype=str,
        itemtype=float,
        default={},
    )
    expGrayPhotometricCutDict = pexConfig.DictField(
        doc=("Per-band specification on maximum (negative) achromatic exposure residual "
             "('gray term') for a visit to be considered photometric.  Must have one "
             "entry per band. Broad-band filters should be -0.05."),
        keytype=str,
        itemtype=float,
        default={},
    )
    expGrayHighCutDict = pexConfig.DictField(
        doc=("Per-band specification on maximum (positive) achromatic exposure residual "
             "('gray term') for a visit to be considered photometric.  Must have one "
             "entry per band.  Broad-band filters should be 0.2."),
        keytype=str,
        itemtype=float,
        default={},
    )
    expGrayRecoverCut = pexConfig.Field(
        doc=("Maximum (negative) exposure gray to be able to recover bad ccds via interpolation. "
             "Visits with more gray extinction will only get CCD zeropoints if there are "
             "sufficient star observations (minStarPerCcd) on that CCD."),
        dtype=float,
        default=-1.0,
    )
    expVarGrayPhotometricCutDict = pexConfig.DictField(
        doc=("Per-band specification on maximum exposure variance to be considered possibly "
             "photometric.  Must have one entry per band.  Broad-band filters should be "
             "0.0005."),
        keytype=str,
        itemtype=float,
        default={},
    )
    expGrayErrRecoverCut = pexConfig.Field(
        doc=("Maximum exposure gray error to be able to recover bad ccds via interpolation. "
             "Visits with more gray variance will only get CCD zeropoints if there are "
             "sufficient star observations (minStarPerCcd) on that CCD."),
        dtype=float,
        default=0.05,
    )
    aperCorrFitNBins = pexConfig.Field(
        doc=("Number of aperture bins used in aperture correction fit.  When set to 0"
             "no fit will be performed, and the config.aperCorrInputSlopes will be "
             "used if available."),
        dtype=int,
        default=10,
    )
    aperCorrInputSlopeDict = pexConfig.DictField(
        doc=("Per-band specification of aperture correction input slope parameters.  These "
             "are used on the first fit iteration, and aperture correction parameters will "
             "be updated from the data if config.aperCorrFitNBins > 0.  It is recommended "
             "to set this when there is insufficient data to fit the parameters (e.g. "
             "tract mode)."),
        keytype=str,
        itemtype=float,
        default={},
    )
    sedboundaryterms = pexConfig.ConfigField(
        doc="Mapping from bands to SED boundary term names used is sedterms.",
        dtype=SedboundarytermDict,
    )
    sedterms = pexConfig.ConfigField(
        doc="Mapping from terms to bands for fgcm linear SED approximations.",
        dtype=SedtermDict,
    )
    sigFgcmMaxErr = pexConfig.Field(
        doc="Maximum mag error for fitting sigma_FGCM",
        dtype=float,
        default=0.01,
    )
    sigFgcmMaxEGrayDict = pexConfig.DictField(
        doc=("Per-band specification for maximum (absolute) achromatic residual (gray value) "
             "for observations in sigma_fgcm (raw repeatability).  Broad-band filters "
             "should be 0.05."),
        keytype=str,
        itemtype=float,
        default={},
    )
    ccdGrayMaxStarErr = pexConfig.Field(
        doc=("Maximum error on a star observation to use in ccd gray (achromatic residual) "
             "computation"),
        dtype=float,
        default=0.10,
    )
    approxThroughputDict = pexConfig.DictField(
        doc=("Per-band specification of the approximate overall throughput at the start of "
             "calibration observations.  Must have one entry per band.  Typically should "
             "be 1.0."),
        keytype=str,
        itemtype=float,
        default={},
    )
    sigmaCalRange = pexConfig.ListField(
        doc="Allowed range for systematic error floor estimation",
        dtype=float,
        default=(0.001, 0.003),
    )
    sigmaCalFitPercentile = pexConfig.ListField(
        doc="Magnitude percentile range to fit systematic error floor",
        dtype=float,
        default=(0.05, 0.15),
    )
    sigmaCalPlotPercentile = pexConfig.ListField(
        doc="Magnitude percentile range to plot systematic error floor",
        dtype=float,
        default=(0.05, 0.95),
    )
    sigma0Phot = pexConfig.Field(
        doc="Systematic error floor for all zeropoints",
        dtype=float,
        default=0.003,
    )
    mapLongitudeRef = pexConfig.Field(
        doc="Reference longitude for plotting maps",
        dtype=float,
        default=0.0,
    )
    mapNSide = pexConfig.Field(
        doc="Healpix nside for plotting maps",
        dtype=int,
        default=256,
    )
    outfileBase = pexConfig.Field(
        doc="Filename start for plot output files",
        dtype=str,
        default=None,
    )
    starColorCuts = pexConfig.ListField(
        doc=("Encoded star-color cuts (using calibration star colors). "
             "This is a list with each entry a string of the format "
             "``band1,band2,low,high`` such that only stars of color "
             "low < band1 - band2 < high will be used for calibration."),
        dtype=str,
        default=("NO_DATA",),
    )
    refStarColorCuts = pexConfig.ListField(
        doc=("Encoded star color cuts specifically to apply to reference stars. "
             "This is a list with each entry a string of the format "
             "``band1,band2,low,high`` such that only stars of color "
             "low < band1 - band2 < high will be used as reference stars."),
        dtype=str,
        default=("NO_DATA",),
    )
    colorSplitBands = pexConfig.ListField(
        doc="Band names to use to split stars by color.  Must have 2 entries.",
        dtype=str,
        length=2,
        default=('g', 'i'),
    )
    modelMagErrors = pexConfig.Field(
        doc="Should FGCM model the magnitude errors from sky/fwhm? (False means trust inputs)",
        dtype=bool,
        default=True,
    )
    useQuadraticPwv = pexConfig.Field(
        doc="Model PWV with a quadratic term for variation through the night?",
        dtype=bool,
        default=False,
    )
    instrumentParsPerBand = pexConfig.Field(
        doc=("Model instrumental parameters per band? "
             "Otherwise, instrumental parameters (QE changes with time) are "
             "shared among all bands."),
        dtype=bool,
        default=False,
    )
    instrumentSlopeMinDeltaT = pexConfig.Field(
        doc=("Minimum time change (in days) between observations to use in constraining "
             "instrument slope."),
        dtype=float,
        default=20.0,
    )
    fitMirrorChromaticity = pexConfig.Field(
        doc="Fit (intraband) mirror chromatic term?",
        dtype=bool,
        default=False,
    )
    fitCcdChromaticityDict = pexConfig.DictField(
        doc="Specification on whether to compute first-order quantum efficiency (QE) "
            "adjustments. Key is band, and value will be True or False. Any band "
            "not explicitly specified will default to False.",
        keytype=str,
        itemtype=bool,
        default={},
    )
    coatingMjds = pexConfig.ListField(
        doc="Mirror coating dates in MJD",
        dtype=float,
        default=(0.0,),
    )
    outputStandardsBeforeFinalCycle = pexConfig.Field(
        doc="Output standard stars prior to final cycle?  Used in debugging.",
        dtype=bool,
        default=False,
    )
    outputZeropointsBeforeFinalCycle = pexConfig.Field(
        doc="Output standard stars prior to final cycle?  Used in debugging.",
        dtype=bool,
        default=False,
    )
    useRepeatabilityForExpGrayCutsDict = pexConfig.DictField(
        doc=("Per-band specification on whether to use star repeatability (instead of exposures) "
             "for computing photometric cuts. Recommended for tract mode or bands with few visits."),
        keytype=str,
        itemtype=bool,
        default={},
    )
    autoPhotometricCutNSig = pexConfig.Field(
        doc=("Number of sigma for automatic computation of (low) photometric cut. "
             "Cut is based on exposure gray width (per band), unless "
             "useRepeatabilityForExpGrayCuts is set, in which case the star "
             "repeatability is used (also per band)."),
        dtype=float,
        default=3.0,
    )
    autoHighCutNSig = pexConfig.Field(
        doc=("Number of sigma for automatic computation of (high) outlier cut. "
             "Cut is based on exposure gray width (per band), unless "
             "useRepeatabilityForExpGrayCuts is set, in which case the star "
             "repeatability is used (also per band)."),
        dtype=float,
        default=4.0,
    )
    quietMode = pexConfig.Field(
        doc="Be less verbose with logging.",
        dtype=bool,
        default=False,
    )
    doPlots = pexConfig.Field(
        doc="Make fgcm QA plots.",
        dtype=bool,
        default=True,
    )
    doPlotsBeforeFinalCycles = pexConfig.Field(
        doc="Make fgcm QA plots before the final two fit cycles? This only applies in"
            "multi-cycle mode, and if doPlots is True. These are typically the most"
            "important QA plots to inspect.",
        dtype=bool,
        default=False,
    )
    randomSeed = pexConfig.Field(
        doc="Random seed for fgcm for consistency in tests.",
        dtype=int,
        default=None,
        optional=True,
    )
    deltaAperFitMinNgoodObs = pexConfig.Field(
        doc="Minimum number of good observations to use mean delta-aper values in fits.",
        dtype=int,
        default=2,
    )
    deltaAperFitPerCcdNx = pexConfig.Field(
        doc=("Number of x bins per ccd when computing delta-aper background offsets. "
             "Only used when ``doComputeDeltaAperPerCcd`` is True."),
        dtype=int,
        default=10,
    )
    deltaAperFitPerCcdNy = pexConfig.Field(
        doc=("Number of y bins per ccd when computing delta-aper background offsets. "
             "Only used when ``doComputeDeltaAperPerCcd`` is True."),
        dtype=int,
        default=10,
    )
    deltaAperFitSpatialNside = pexConfig.Field(
        doc="Healpix nside to compute spatial delta-aper background offset maps.",
        dtype=int,
        default=64,
    )
    deltaAperInnerRadiusArcsec = pexConfig.Field(
        doc=("Inner radius used to compute deltaMagAper (arcseconds). "
             "Must be positive and less than ``deltaAperOuterRadiusArcsec`` if "
             "any of ``doComputeDeltaAperPerVisit``, ``doComputeDeltaAperPerStar``, "
             "``doComputeDeltaAperMap``, ``doComputeDeltaAperPerCcd`` are set."),
        dtype=float,
        default=0.0,
    )
    deltaAperOuterRadiusArcsec = pexConfig.Field(
        doc=("Outer radius used to compute deltaMagAper (arcseconds). "
             "Must be positive and greater than ``deltaAperInnerRadiusArcsec`` if "
             "any of ``doComputeDeltaAperPerVisit``, ``doComputeDeltaAperPerStar``, "
             "``doComputeDeltaAperMap``, ``doComputeDeltaAperPerCcd`` are set."),
        dtype=float,
        default=0.0,
    )
    doComputeDeltaAperPerVisit = pexConfig.Field(
        doc=("Do the computation of delta-aper background offsets per visit? "
             "Note: this option can be very slow when there are many visits."),
        dtype=bool,
        default=False,
    )
    doComputeDeltaAperPerStar = pexConfig.Field(
        doc="Do the computation of delta-aper mean values per star?",
        dtype=bool,
        default=True,
    )
    doComputeDeltaAperMap = pexConfig.Field(
        doc=("Do the computation of delta-aper spatial maps? "
             "This is only used if ``doComputeDeltaAperPerStar`` is True,"),
        dtype=bool,
        default=False,
    )
    doComputeDeltaAperPerCcd = pexConfig.Field(
        doc="Do the computation of per-ccd delta-aper background offsets?",
        dtype=bool,
        default=False,
    )

    def validate(self):
        super().validate()

        if self.connections.previousCycleNumber != str(self.cycleNumber - 1):
            msg = "cycleNumber in template must be connections.previousCycleNumber + 1"
            raise RuntimeError(msg)
        if self.connections.cycleNumber != str(self.cycleNumber):
            msg = "cycleNumber in template must be equal to connections.cycleNumber"
            raise RuntimeError(msg)

        for band in self.fitBands:
            if band not in self.bands:
                msg = 'fitBand %s not in bands' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.fitBands, self, msg)
        for band in self.requiredBands:
            if band not in self.bands:
                msg = 'requiredBand %s not in bands' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.requiredBands, self, msg)
        for band in self.colorSplitBands:
            if band not in self.bands:
                msg = 'colorSplitBand %s not in bands' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.colorSplitBands, self, msg)
        for band in self.bands:
            if band not in self.superStarSubCcdDict:
                msg = 'band %s not in superStarSubCcdDict' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.superStarSubCcdDict,
                                                     self, msg)
            if band not in self.ccdGraySubCcdDict:
                msg = 'band %s not in ccdGraySubCcdDict' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.ccdGraySubCcdDict,
                                                     self, msg)
            if band not in self.expGrayPhotometricCutDict:
                msg = 'band %s not in expGrayPhotometricCutDict' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.expGrayPhotometricCutDict,
                                                     self, msg)
            if band not in self.expGrayHighCutDict:
                msg = 'band %s not in expGrayHighCutDict' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.expGrayHighCutDict,
                                                     self, msg)
            if band not in self.expVarGrayPhotometricCutDict:
                msg = 'band %s not in expVarGrayPhotometricCutDict' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.expVarGrayPhotometricCutDict,
                                                     self, msg)
            if band not in self.sigFgcmMaxEGrayDict:
                msg = 'band %s not in sigFgcmMaxEGrayDict' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.sigFgcmMaxEGrayDict,
                                                     self, msg)
            if band not in self.approxThroughputDict:
                msg = 'band %s not in approxThroughputDict' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.approxThroughputDict,
                                                     self, msg)
            if band not in self.useRepeatabilityForExpGrayCutsDict:
                msg = 'band %s not in useRepeatabilityForExpGrayCutsDict' % (band)
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.useRepeatabilityForExpGrayCutsDict,
                                                     self, msg)

        if self.doComputeDeltaAperPerVisit or self.doComputeDeltaAperMap \
           or self.doComputeDeltaAperPerCcd:
            if self.deltaAperInnerRadiusArcsec <= 0.0:
                msg = 'deltaAperInnerRadiusArcsec must be positive if deltaAper computations are turned on.'
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.deltaAperInnerRadiusArcsec,
                                                     self, msg)
            if self.deltaAperOuterRadiusArcsec <= 0.0:
                msg = 'deltaAperOuterRadiusArcsec must be positive if deltaAper computations are turned on.'
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.deltaAperOuterRadiusArcsec,
                                                     self, msg)
            if self.deltaAperOuterRadiusArcsec <= self.deltaAperInnerRadiusArcsec:
                msg = ('deltaAperOuterRadiusArcsec must be greater than deltaAperInnerRadiusArcsec if '
                       'deltaAper computations are turned on.')
                raise pexConfig.FieldValidationError(FgcmFitCycleConfig.deltaAperOuterRadiusArcsec,
                                                     self, msg)


class FgcmFitCycleTask(pipeBase.PipelineTask):
ConfigClass = FgcmFitCycleConfig
_DefaultName = "fgcmFitCycle"

def __init__(self, initInputs=None, **kwargs):
    super().__init__(**kwargs)

def runQuantum(self, butlerQC, inputRefs, outputRefs):
    camera = butlerQC.get(inputRefs.camera)

    nCore = butlerQC.resources.num_cores

    handleDict = {}

    handleDict['fgcmLookUpTable'] = butlerQC.get(inputRefs.fgcmLookUpTable)
    handleDict['fgcmVisitCatalog'] = butlerQC.get(inputRefs.fgcmVisitCatalog)

    if self.config.useParquetCatalogFormat:
        handleDict['fgcmStarObservations'] = butlerQC.get(inputRefs.fgcmStarObservationsParquet)
        handleDict['fgcmStarIds'] = butlerQC.get(inputRefs.fgcmStarIdsParquet)
        if self.config.doReferenceCalibration:
            handleDict['fgcmReferenceStars'] = butlerQC.get(inputRefs.fgcmReferenceStarsParquet)
    else:
        handleDict['fgcmStarObservations'] = butlerQC.get(inputRefs.fgcmStarObservations)
        handleDict['fgcmStarIds'] = butlerQC.get(inputRefs.fgcmStarIds)
        handleDict['fgcmStarIndices'] = butlerQC.get(inputRefs.fgcmStarIndices)
        if self.config.doReferenceCalibration:
            handleDict['fgcmReferenceStars'] = butlerQC.get(inputRefs.fgcmReferenceStars)
    if self.config.cycleNumber > 0:
        handleDict['fgcmFlaggedStars'] = butlerQC.get(inputRefs.fgcmFlaggedStarsInput)
        handleDict['fgcmFitParameters'] = butlerQC.get(inputRefs.fgcmFitParametersInput)

    fgcmDatasetDict = None
    if self.config.doMultipleCycles:
        # Run multiple cycles at once.
        config = copy.copy(self.config)
        config.update(cycleNumber=0)
        for cycle in range(self.config.multipleCyclesFinalCycleNumber + 1):
            if cycle == self.config.multipleCyclesFinalCycleNumber:
                config.update(isFinalCycle=True)

            if cycle > 0:
                handleDict['fgcmFlaggedStars'] = fgcmDatasetDict['fgcmFlaggedStars']
                handleDict['fgcmFitParameters'] = fgcmDatasetDict['fgcmFitParameters']

            # Set up plot outputs.
            # Note that nothing will go in the dict if doPlots is False.
            plotHandleDict = {}
            for outputRefName in outputRefs.keys():
                if outputRefName.endswith("Plot") and f"Cycle{cycle}" in outputRefName:
                    ref = getattr(outputRefs, outputRefName)
                    if isinstance(ref, (tuple, list)):
                        if "physical_filter" in ref[0].dimensions:
                            for filterRef in ref:
                                handleDictKey = f"{outputRefName}_{filterRef.dataId['physical_filter']}"
                                plotHandleDict[handleDictKey] = filterRef
                        if "band" in ref[0].dimensions:
                            for bandRef in ref:
                                handleDictKey = f"{outputRefName}_{bandRef.dataId['band']}"
                                plotHandleDict[handleDictKey] = bandRef
                    else:
                        plotHandleDict[outputRefName] = ref

            fgcmDatasetDict, config = self._fgcmFitCycle(
                camera,
                handleDict,
                butlerQC=butlerQC,
                plotHandleDict=plotHandleDict,
                config=config,
                nCore=nCore,
            )
            butlerQC.put(fgcmDatasetDict['fgcmFitParameters'],
                         getattr(outputRefs, f'fgcm_Cycle{cycle}_FitParameters'))
            butlerQC.put(fgcmDatasetDict['fgcmFlaggedStars'],
                         getattr(outputRefs, f'fgcm_Cycle{cycle}_FlaggedStars'))
            butlerQC.put(config,
                         getattr(outputRefs, f'fgcm_Cycle{cycle}_OutputConfig'))
            if self.outputZeropoints:
                butlerQC.put(fgcmDatasetDict['fgcmZeropoints'],
                             getattr(outputRefs, f'fgcm_Cycle{cycle}_Zeropoints'))
                butlerQC.put(fgcmDatasetDict['fgcmAtmosphereParameters'],
                             getattr(outputRefs, f'fgcm_Cycle{cycle}_AtmosphereParameters'))
            if self.outputStandards:
                butlerQC.put(fgcmDatasetDict['fgcmStandardStars'],
                             getattr(outputRefs, f'fgcm_Cycle{cycle}_StandardStars'))
    else:
        # Run a single cycle

        # Set up plot outputs.
        # Note that nothing will go in the dict if doPlots is False.
        plotHandleDict = {}
        for outputRefName in outputRefs.keys():
            if outputRefName.endswith("Plot") and f"Cycle{self.config.cycleNumber}" in outputRefName:
                ref = getattr(outputRefs, outputRefName)
                if isinstance(ref, (tuple, list)):
                    if "physical_filter" in ref[0].dimensions:
                        for filterRef in ref:
                            handleDictKey = f"{outputRefName}_{filterRef.dataId['physical_filter']}"
                            plotHandleDict[handleDictKey] = filterRef
                    if "band" in ref[0].dimensions:
                        for bandRef in ref:
                            handleDictKey = f"{outputRefName}_{bandRef.dataId['band']}"
                            plotHandleDict[handleDictKey] = bandRef
                else:
                    plotHandleDict[outputRefName] = ref

        fgcmDatasetDict, _ = self._fgcmFitCycle(
            camera,
            handleDict,
            nCore=nCore,
            butlerQC=butlerQC,
            plotHandleDict=plotHandleDict,
            multiCycle=False,
        )

        butlerQC.put(fgcmDatasetDict['fgcmFitParameters'], outputRefs.fgcmFitParameters)
        butlerQC.put(fgcmDatasetDict['fgcmFlaggedStars'], outputRefs.fgcmFlaggedStars)
        if self.outputZeropoints:
            butlerQC.put(fgcmDatasetDict['fgcmZeropoints'], outputRefs.fgcmZeropoints)
            butlerQC.put(fgcmDatasetDict['fgcmAtmosphereParameters'], outputRefs.fgcmAtmosphereParameters)
        if self.outputStandards:
            butlerQC.put(fgcmDatasetDict['fgcmStandardStars'], outputRefs.fgcmStandardStars)

def _fgcmFitCycle(
    self,
    camera,
    handleDict,
    butlerQC=None,
    plotHandleDict=None,
    config=None,
    nCore=1,
    multiCycle=True,
):

Definition at line 1304 of file fgcmFitCycle.py.

◆ config

lsst.fgcmcal.fgcmFitCycle.config : `lsst.pex.config.Config`, optional

Definition at line 1329 of file fgcmFitCycle.py.

◆ fgcmDatasetDict

lsst.fgcmcal.fgcmFitCycle.fgcmDatasetDict : `dict`

Definition at line 1338 of file fgcmFitCycle.py.

◆ fgcmFitCycle

lsst.fgcmcal.fgcmFitCycle.fgcmFitCycle : `lsst.fgcm.FgcmFitCycle`
parLutFilterNames = np.array(parCat[0]['lutFilterNames'].split(','))
parFitBands = np.array(parCat[0]['fitBands'].split(','))

inParInfo = np.zeros(1, dtype=[('NCCD', 'i4'),
                               ('LUTFILTERNAMES', parLutFilterNames.dtype.str,
                                (parLutFilterNames.size, )),
                               ('FITBANDS', parFitBands.dtype.str, (parFitBands.size, )),
                               ('LNTAUUNIT', 'f8'),
                               ('LNTAUSLOPEUNIT', 'f8'),
                               ('ALPHAUNIT', 'f8'),
                               ('LNPWVUNIT', 'f8'),
                               ('LNPWVSLOPEUNIT', 'f8'),
                               ('LNPWVQUADRATICUNIT', 'f8'),
                               ('LNPWVGLOBALUNIT', 'f8'),
                               ('O3UNIT', 'f8'),
                               ('QESYSUNIT', 'f8'),
                               ('FILTEROFFSETUNIT', 'f8'),
                               ('HASEXTERNALPWV', 'i2'),
                               ('HASEXTERNALTAU', 'i2')])
inParInfo['NCCD'] = parCat['nCcd']
inParInfo['LUTFILTERNAMES'][:] = parLutFilterNames
inParInfo['FITBANDS'][:] = parFitBands
inParInfo['HASEXTERNALPWV'] = parCat['hasExternalPwv']
inParInfo['HASEXTERNALTAU'] = parCat['hasExternalTau']

inParams = np.zeros(1, dtype=[('PARALPHA', 'f8', (parCat['parAlpha'].size, )),
                              ('PARO3', 'f8', (parCat['parO3'].size, )),
                              ('PARLNTAUINTERCEPT', 'f8',
                               (parCat['parLnTauIntercept'].size, )),
                              ('PARLNTAUSLOPE', 'f8',
                               (parCat['parLnTauSlope'].size, )),
                              ('PARLNPWVINTERCEPT', 'f8',
                               (parCat['parLnPwvIntercept'].size, )),
                              ('PARLNPWVSLOPE', 'f8',
                               (parCat['parLnPwvSlope'].size, )),
                              ('PARLNPWVQUADRATIC', 'f8',
                               (parCat['parLnPwvQuadratic'].size, )),
                              ('PARQESYSINTERCEPT', 'f8',
                               (parCat['parQeSysIntercept'].size, )),
                              ('COMPQESYSSLOPE', 'f8',
                               (parCat['compQeSysSlope'].size, )),
                              ('PARFILTEROFFSET', 'f8',
                               (parCat['parFilterOffset'].size, )),
                              ('PARFILTEROFFSETFITFLAG', 'i2',
                               (parCat['parFilterOffsetFitFlag'].size, )),
                              ('PARRETRIEVEDLNPWVSCALE', 'f8'),
                              ('PARRETRIEVEDLNPWVOFFSET', 'f8'),
                              ('PARRETRIEVEDLNPWVNIGHTLYOFFSET', 'f8',
                               (parCat['parRetrievedLnPwvNightlyOffset'].size, )),
                              ('COMPABSTHROUGHPUT', 'f8',
                               (parCat['compAbsThroughput'].size, )),
                              ('COMPREFOFFSET', 'f8',
                               (parCat['compRefOffset'].size, )),
                              ('COMPREFSIGMA', 'f8',
                               (parCat['compRefSigma'].size, )),
                              ('COMPMIRRORCHROMATICITY', 'f8',
                               (parCat['compMirrorChromaticity'].size, )),
                              ('MIRRORCHROMATICITYPIVOT', 'f8',
                               (parCat['mirrorChromaticityPivot'].size, )),
                              ('COMPCCDCHROMATICITY', 'f8',
                               (parCat['compCcdChromaticity'].size, )),
                              ('COMPMEDIANSEDSLOPE', 'f8',
                               (parCat['compMedianSedSlope'].size, )),
                              ('COMPAPERCORRPIVOT', 'f8',
                               (parCat['compAperCorrPivot'].size, )),
                              ('COMPAPERCORRSLOPE', 'f8',
                               (parCat['compAperCorrSlope'].size, )),
                              ('COMPAPERCORRSLOPEERR', 'f8',
                               (parCat['compAperCorrSlopeErr'].size, )),
                              ('COMPAPERCORRRANGE', 'f8',
                               (parCat['compAperCorrRange'].size, )),
                              ('COMPMODELERREXPTIMEPIVOT', 'f8',
                               (parCat['compModelErrExptimePivot'].size, )),
                              ('COMPMODELERRFWHMPIVOT', 'f8',
                               (parCat['compModelErrFwhmPivot'].size, )),
                              ('COMPMODELERRSKYPIVOT', 'f8',
                               (parCat['compModelErrSkyPivot'].size, )),
                              ('COMPMODELERRPARS', 'f8',
                               (parCat['compModelErrPars'].size, )),
                              ('COMPEXPGRAY', 'f8',
                               (parCat['compExpGray'].size, )),
                              ('COMPVARGRAY', 'f8',
                               (parCat['compVarGray'].size, )),
                              ('COMPEXPDELTAMAGBKG', 'f8',
                               (parCat['compExpDeltaMagBkg'].size, )),
                              ('COMPNGOODSTARPEREXP', 'i4',
                               (parCat['compNGoodStarPerExp'].size, )),
                              ('COMPEXPREFOFFSET', 'f8',
                               (parCat['compExpRefOffset'].size, )),
                              ('COMPSIGFGCM', 'f8',
                               (parCat['compSigFgcm'].size, )),
                              ('COMPSIGMACAL', 'f8',
                               (parCat['compSigmaCal'].size, )),
                              ('COMPRETRIEVEDLNPWV', 'f8',
                               (parCat['compRetrievedLnPwv'].size, )),
                              ('COMPRETRIEVEDLNPWVRAW', 'f8',
                               (parCat['compRetrievedLnPwvRaw'].size, )),
                              ('COMPRETRIEVEDLNPWVFLAG', 'i2',
                               (parCat['compRetrievedLnPwvFlag'].size, )),
                              ('COMPRETRIEVEDTAUNIGHT', 'f8',
                               (parCat['compRetrievedTauNight'].size, )),
                              ('COMPEPSILON', 'f8',
                               (parCat['compEpsilon'].size, )),
                              ('COMPMEDDELTAAPER', 'f8',
                               (parCat['compMedDeltaAper'].size, )),
                              ('COMPGLOBALEPSILON', 'f4',
                               (parCat['compGlobalEpsilon'].size, )),
                              ('COMPEPSILONMAP', 'f4',
                               (parCat['compEpsilonMap'].size, )),
                              ('COMPEPSILONNSTARMAP', 'i4',
                               (parCat['compEpsilonNStarMap'].size, )),
                              ('COMPEPSILONCCDMAP', 'f4',
                               (parCat['compEpsilonCcdMap'].size, )),
                              ('COMPEPSILONCCDNSTARMAP', 'i4',
                               (parCat['compEpsilonCcdNStarMap'].size, ))])

inParams['PARALPHA'][:] = parCat['parAlpha'][0, :]
inParams['PARO3'][:] = parCat['parO3'][0, :]
inParams['PARLNTAUINTERCEPT'][:] = parCat['parLnTauIntercept'][0, :]
inParams['PARLNTAUSLOPE'][:] = parCat['parLnTauSlope'][0, :]
inParams['PARLNPWVINTERCEPT'][:] = parCat['parLnPwvIntercept'][0, :]
inParams['PARLNPWVSLOPE'][:] = parCat['parLnPwvSlope'][0, :]
inParams['PARLNPWVQUADRATIC'][:] = parCat['parLnPwvQuadratic'][0, :]
inParams['PARQESYSINTERCEPT'][:] = parCat['parQeSysIntercept'][0, :]
inParams['COMPQESYSSLOPE'][:] = parCat['compQeSysSlope'][0, :]
inParams['PARFILTEROFFSET'][:] = parCat['parFilterOffset'][0, :]
inParams['PARFILTEROFFSETFITFLAG'][:] = parCat['parFilterOffsetFitFlag'][0, :]
inParams['PARRETRIEVEDLNPWVSCALE'] = parCat['parRetrievedLnPwvScale']
inParams['PARRETRIEVEDLNPWVOFFSET'] = parCat['parRetrievedLnPwvOffset']
inParams['PARRETRIEVEDLNPWVNIGHTLYOFFSET'][:] = parCat['parRetrievedLnPwvNightlyOffset'][0, :]
inParams['COMPABSTHROUGHPUT'][:] = parCat['compAbsThroughput'][0, :]
inParams['COMPREFOFFSET'][:] = parCat['compRefOffset'][0, :]
inParams['COMPREFSIGMA'][:] = parCat['compRefSigma'][0, :]
inParams['COMPMIRRORCHROMATICITY'][:] = parCat['compMirrorChromaticity'][0, :]
inParams['MIRRORCHROMATICITYPIVOT'][:] = parCat['mirrorChromaticityPivot'][0, :]
inParams['COMPCCDCHROMATICITY'][:] = parCat['compCcdChromaticity'][0, :]
inParams['COMPMEDIANSEDSLOPE'][:] = parCat['compMedianSedSlope'][0, :]
inParams['COMPAPERCORRPIVOT'][:] = parCat['compAperCorrPivot'][0, :]
inParams['COMPAPERCORRSLOPE'][:] = parCat['compAperCorrSlope'][0, :]
inParams['COMPAPERCORRSLOPEERR'][:] = parCat['compAperCorrSlopeErr'][0, :]
inParams['COMPAPERCORRRANGE'][:] = parCat['compAperCorrRange'][0, :]
inParams['COMPMODELERREXPTIMEPIVOT'][:] = parCat['compModelErrExptimePivot'][0, :]
inParams['COMPMODELERRFWHMPIVOT'][:] = parCat['compModelErrFwhmPivot'][0, :]
inParams['COMPMODELERRSKYPIVOT'][:] = parCat['compModelErrSkyPivot'][0, :]
inParams['COMPMODELERRPARS'][:] = parCat['compModelErrPars'][0, :]
inParams['COMPEXPGRAY'][:] = parCat['compExpGray'][0, :]
inParams['COMPVARGRAY'][:] = parCat['compVarGray'][0, :]
inParams['COMPEXPDELTAMAGBKG'][:] = parCat['compExpDeltaMagBkg'][0, :]
inParams['COMPNGOODSTARPEREXP'][:] = parCat['compNGoodStarPerExp'][0, :]
inParams['COMPEXPREFOFFSET'][:] = parCat['compExpRefOffset'][0, :]
inParams['COMPSIGFGCM'][:] = parCat['compSigFgcm'][0, :]
inParams['COMPSIGMACAL'][:] = parCat['compSigmaCal'][0, :]
inParams['COMPRETRIEVEDLNPWV'][:] = parCat['compRetrievedLnPwv'][0, :]
inParams['COMPRETRIEVEDLNPWVRAW'][:] = parCat['compRetrievedLnPwvRaw'][0, :]
inParams['COMPRETRIEVEDLNPWVFLAG'][:] = parCat['compRetrievedLnPwvFlag'][0, :]
inParams['COMPRETRIEVEDTAUNIGHT'][:] = parCat['compRetrievedTauNight'][0, :]
inParams['COMPEPSILON'][:] = parCat['compEpsilon'][0, :]
inParams['COMPMEDDELTAAPER'][:] = parCat['compMedDeltaAper'][0, :]
inParams['COMPGLOBALEPSILON'][:] = parCat['compGlobalEpsilon'][0, :]
inParams['COMPEPSILONMAP'][:] = parCat['compEpsilonMap'][0, :]
inParams['COMPEPSILONNSTARMAP'][:] = parCat['compEpsilonNStarMap'][0, :]
inParams['COMPEPSILONCCDMAP'][:] = parCat['compEpsilonCcdMap'][0, :]
inParams['COMPEPSILONCCDNSTARMAP'][:] = parCat['compEpsilonCcdNStarMap'][0, :]

inSuperStar = np.zeros(parCat['superstarSize'][0, :], dtype='f8')
inSuperStar[:, :, :, :] = parCat['superstar'][0, :].reshape(inSuperStar.shape)

return (inParInfo, inParams, inSuperStar)

def _makeFgcmOutputDatasets(self, fgcmFitCycle):

Definition at line 1804 of file fgcmFitCycle.py.

◆ fitBandString

lsst.fgcmcal.fgcmFitCycle.fitBandString : `str`

Definition at line 1879 of file fgcmFitCycle.py.

◆ flagStarCat

lsst.fgcmcal.fgcmFitCycle.flagStarCat : `lsst.afw.table.BaseCatalog`

Definition at line 2136 of file fgcmFitCycle.py.

◆ flagStarSchema

lsst.fgcmcal.fgcmFitCycle.flagStarSchema : `lsst.afw.table.Schema`
parCat = afwTable.BaseCatalog(parSchema)
parCat.reserve(1)

# The parameter catalog just has one row, with many columns for all the
# atmosphere and instrument fit parameters
rec = parCat.addNew()

# info section
rec['nCcd'] = parInfo['NCCD'][0]
rec['lutFilterNames'] = lutFilterNameString
rec['fitBands'] = fitBandString
# note these are not currently supported here.
rec['hasExternalPwv'] = 0
rec['hasExternalTau'] = 0

# parameter section

scalarNames = ['parRetrievedLnPwvScale', 'parRetrievedLnPwvOffset']

arrNames = ['parAlpha', 'parO3', 'parLnTauIntercept', 'parLnTauSlope',
            'parLnPwvIntercept', 'parLnPwvSlope', 'parLnPwvQuadratic',
            'parQeSysIntercept', 'compQeSysSlope',
            'parRetrievedLnPwvNightlyOffset', 'compAperCorrPivot',
            'parFilterOffset', 'parFilterOffsetFitFlag',
            'compAbsThroughput', 'compRefOffset', 'compRefSigma',
            'compMirrorChromaticity', 'mirrorChromaticityPivot', 'compCcdChromaticity',
            'compAperCorrSlope', 'compAperCorrSlopeErr', 'compAperCorrRange',
            'compModelErrExptimePivot', 'compModelErrFwhmPivot',
            'compModelErrSkyPivot', 'compModelErrPars',
            'compExpGray', 'compVarGray', 'compNGoodStarPerExp', 'compSigFgcm',
            'compSigmaCal', 'compExpDeltaMagBkg', 'compMedianSedSlope',
            'compRetrievedLnPwv', 'compRetrievedLnPwvRaw', 'compRetrievedLnPwvFlag',
            'compRetrievedTauNight', 'compEpsilon', 'compMedDeltaAper',
            'compGlobalEpsilon', 'compEpsilonMap', 'compEpsilonNStarMap',
            'compEpsilonCcdMap', 'compEpsilonCcdNStarMap', 'compExpRefOffset']

for scalarName in scalarNames:
    rec[scalarName] = pars[scalarName.upper()][0]

for arrName in arrNames:
    rec[arrName][:] = np.atleast_1d(pars[0][arrName.upper()])[:]

# superstar section
rec['superstarSize'][:] = parSuperStarFlat.shape
rec['superstar'][:] = parSuperStarFlat.ravel()

return parCat

def _makeFlagStarSchema(self):
flagStarSchema = afwTable.Schema()

flagStarSchema.addField('objId', type=np.int32, doc='FGCM object id')
flagStarSchema.addField('objFlag', type=np.int32, doc='FGCM object flag')

return flagStarSchema

def _makeFlagStarCat(self, flagStarSchema, flagStarStruct):

Definition at line 2113 of file fgcmFitCycle.py.

◆ flagStarStruct

lsst.fgcmcal.fgcmFitCycle.flagStarStruct : `numpy.ndarray`

Definition at line 2131 of file fgcmFitCycle.py.

◆ handleDict

lsst.fgcmcal.fgcmFitCycle.handleDict : `dict`

Definition at line 1305 of file fgcmFitCycle.py.

◆ inParameters

lsst.fgcmcal.fgcmFitCycle.inParameters : `numpy.ndarray`

Definition at line 1624 of file fgcmFitCycle.py.

◆ inParInfo

lsst.fgcmcal.fgcmFitCycle.inParInfo : `numpy.ndarray`

Definition at line 1622 of file fgcmFitCycle.py.

◆ inSuperStar

lsst.fgcmcal.fgcmFitCycle.inSuperStar : `numpy.array`

Definition at line 1626 of file fgcmFitCycle.py.

◆ lutFilterNameString

lsst.fgcmcal.fgcmFitCycle.lutFilterNameString : `str`

Definition at line 1877 of file fgcmFitCycle.py.

◆ multiCycle

lsst.fgcmcal.fgcmFitCycle.multiCycle : `bool`, optional

Definition at line 1333 of file fgcmFitCycle.py.

◆ MULTIPLE_CYCLES_MAX

int lsst.fgcmcal.fgcmFitCycle.MULTIPLE_CYCLES_MAX = 10

Definition at line 56 of file fgcmFitCycle.py.

◆ nCore

lsst.fgcmcal.fgcmFitCycle.nCore : `int`, optional

Definition at line 1331 of file fgcmFitCycle.py.

◆ parCat

lsst.fgcmcal.fgcmFitCycle.parCat : `lsst.afw.table.BaseCatalog`
if config is not None:
    _config = config
else:
    _config = self.config

# Set defaults on whether to output standards and zeropoints
self.maxIter = _config.maxIterBeforeFinalCycle
self.outputStandards = _config.outputStandardsBeforeFinalCycle
self.outputZeropoints = _config.outputZeropointsBeforeFinalCycle
self.resetFitParameters = True

if _config.isFinalCycle:
    # This is the final fit cycle, so we do not want to reset fit
    # parameters, we want to run a final "clean-up" with 0 fit iterations,
    # and we always want to output standards and zeropoints
    self.maxIter = 0
    self.outputStandards = True
    self.outputZeropoints = True
    self.resetFitParameters = False

lutCat = handleDict['fgcmLookUpTable'].get()
fgcmLut, lutIndexVals, lutStd = translateFgcmLut(lutCat,
                                                 dict(_config.physicalFilterMap))
del lutCat

# Check if we want to do plots.
doPlots = _config.doPlots
if doPlots and multiCycle:
    if _config.cycleNumber < (_config.multipleCyclesFinalCycleNumber - 1) \
       and not _config.doPlotsBeforeFinalCycles:
        doPlots = False

configDict = makeConfigDict(_config, self.log, camera,
                            self.maxIter, self.resetFitParameters,
                            self.outputZeropoints,
                            lutIndexVals[0]['FILTERNAMES'],
                            nCore=nCore,
                            doPlots=doPlots)

# next we need the exposure/visit information
visitCat = handleDict['fgcmVisitCatalog'].get()
fgcmExpInfo = translateVisitCatalog(visitCat)
del visitCat

focalPlaneProjector = FocalPlaneProjector(camera,
                                          self.config.defaultCameraOrientation)

noFitsDict = {'lutIndex': lutIndexVals,
              'lutStd': lutStd,
              'expInfo': fgcmExpInfo,
              'focalPlaneProjector': focalPlaneProjector}

# set up the fitter object
fgcmFitCycle = fgcm.FgcmFitCycle(
    configDict,
    useFits=False,
    noFitsDict=noFitsDict,
    noOutput=True,
    butlerQC=butlerQC,
    plotHandleDict=plotHandleDict,
)

# create the parameter object
if (fgcmFitCycle.initialCycle):
    # cycle = 0, initial cycle
    fgcmPars = fgcm.FgcmParameters.newParsWithArrays(fgcmFitCycle.fgcmConfig,
                                                     fgcmLut,
                                                     fgcmExpInfo,
                                                     butlerQC=butlerQC,
                                                     plotHandleDict=plotHandleDict)
else:
    if isinstance(handleDict['fgcmFitParameters'], afwTable.BaseCatalog):
        parCat = handleDict['fgcmFitParameters']
    else:
        parCat = handleDict['fgcmFitParameters'].get()
    inParInfo, inParams, inSuperStar = self._loadParameters(parCat)
    del parCat
    fgcmPars = fgcm.FgcmParameters.loadParsWithArrays(fgcmFitCycle.fgcmConfig,
                                                      fgcmExpInfo,
                                                      inParInfo,
                                                      inParams,
                                                      inSuperStar,
                                                      butlerQC=butlerQC,
                                                      plotHandleDict=plotHandleDict)

# set up the stars...
fgcmStars = fgcm.FgcmStars(fgcmFitCycle.fgcmConfig, butlerQC=butlerQC, plotHandleDict=plotHandleDict)

starObs = handleDict['fgcmStarObservations'].get()
starIds = handleDict['fgcmStarIds'].get()
if not self.config.useParquetCatalogFormat:
    starIndices = handleDict['fgcmStarIndices'].get()
else:
    starIndices = None

# grab the flagged stars if available
if 'fgcmFlaggedStars' in handleDict:
    if isinstance(handleDict['fgcmFlaggedStars'], afwTable.BaseCatalog):
        flaggedStars = handleDict['fgcmFlaggedStars']
    else:
        flaggedStars = handleDict['fgcmFlaggedStars'].get()
    flagId = flaggedStars['objId'][:]
    flagFlag = flaggedStars['objFlag'][:]

    del flaggedStars
elif self.config.useParquetCatalogFormat:
    # If we are using the parquet catalog format, then that means that
    # reserved stars have already been flagged.  We extract the flags here
    # to input to fgcm, which will then be persisted (with additional
    # quality flags) as the fgcmFlaggedStars datatype in subsequent
    # fit cycles.
    (flagged,) = (starIds['obj_flag'] > 0).nonzero()
    flagId = starIds['fgcm_id'][flagged]
    flagFlag = starIds['obj_flag'][flagged]
else:
    flagId = None
    flagFlag = None

if _config.doReferenceCalibration:
    refStars = handleDict['fgcmReferenceStars'].get()

    refMag, refMagErr = extractReferenceMags(refStars,
                                             _config.bands,
                                             _config.physicalFilterMap)

    refId = refStars['fgcm_id'][:]
else:
    refStars = None
    refId = None
    refMag = None
    refMagErr = None

# match star observations to visits
# Only those star observations that match visits from fgcmExpInfo['VISIT'] will
# actually be transferred into fgcm using the indexing below.
if self.config.useParquetCatalogFormat:
    visitIndex = np.searchsorted(fgcmExpInfo['VISIT'], starObs['visit'])
else:
    visitIndex = np.searchsorted(fgcmExpInfo['VISIT'], starObs['visit'][starIndices['obsIndex']])

# The fgcmStars.loadStars method will copy all the star information into
# special shared memory objects that will not blow up the memory usage when
# used with python multiprocessing.  Once all the numbers are copied,
# it is necessary to release all references to the objects that previously
# stored the data to ensure that the garbage collector can clear the memory,
# and ensure that this memory is not copied when multiprocessing kicks in.

if self.config.useParquetCatalogFormat:
    # Note that the ra/dec coordinates for the parquet format are in
    # degrees, which is what fgcm expects.
    fgcmStars.loadStars(fgcmPars,
                        starObs['visit'][:],
                        starObs['detector'][:],
                        starObs['ra'][:],
                        starObs['dec'][:],
                        starObs['inst_mag'][:],
                        starObs['inst_mag_err'][:],
                        fgcmExpInfo['FILTERNAME'][visitIndex],
                        starIds['fgcm_id'][:],
                        starIds['ra'][:],
                        starIds['dec'][:],
                        starIds['obs_arr_index'][:],
                        starIds['n_obs'][:],
                        obsX=starObs['x'][:],
                        obsY=starObs['y'][:],
                        obsDeltaMagBkg=starObs['delta_mag_bkg'][:],
                        obsDeltaAper=starObs['delta_mag_aper'][:],
                        refID=refId,
                        refMag=refMag,
                        refMagErr=refMagErr,
                        flagID=flagId,
                        flagFlag=flagFlag,
                        computeNobs=True)
else:
    # We determine the conversion from the native units (typically radians) to
    # degrees for the first star.  This allows us to treat coord_ra/coord_dec as
    # numpy arrays rather than Angles, which would we approximately 600x slower.
    conv = starObs[0]['ra'].asDegrees() / float(starObs[0]['ra'])

    fgcmStars.loadStars(fgcmPars,
                        starObs['visit'][starIndices['obsIndex']],
                        starObs['ccd'][starIndices['obsIndex']],
                        starObs['ra'][starIndices['obsIndex']] * conv,
                        starObs['dec'][starIndices['obsIndex']] * conv,
                        starObs['instMag'][starIndices['obsIndex']],
                        starObs['instMagErr'][starIndices['obsIndex']],
                        fgcmExpInfo['FILTERNAME'][visitIndex],
                        starIds['fgcm_id'][:],
                        starIds['ra'][:],
                        starIds['dec'][:],
                        starIds['obsArrIndex'][:],
                        starIds['nObs'][:],
                        obsX=starObs['x'][starIndices['obsIndex']],
                        obsY=starObs['y'][starIndices['obsIndex']],
                        obsDeltaMagBkg=starObs['deltaMagBkg'][starIndices['obsIndex']],
                        obsDeltaAper=starObs['deltaMagAper'][starIndices['obsIndex']],
                        psfCandidate=starObs['psf_candidate'][starIndices['obsIndex']],
                        refID=refId,
                        refMag=refMag,
                        refMagErr=refMagErr,
                        flagID=flagId,
                        flagFlag=flagFlag,
                        computeNobs=True)

# Release all references to temporary objects holding star data (see above)
del starObs
del starIds
del starIndices
del flagId
del flagFlag
del refStars
del refId
del refMag
del refMagErr

# and set the bits in the cycle object
fgcmFitCycle.setLUT(fgcmLut)
fgcmFitCycle.setStars(fgcmStars, fgcmPars)
fgcmFitCycle.setPars(fgcmPars)

# finish the setup
fgcmFitCycle.finishSetup()

# and run
fgcmFitCycle.run()

##################
# Persistance
##################

fgcmDatasetDict = self._makeFgcmOutputDatasets(fgcmFitCycle)

# Output the config for the next cycle
# We need to make a copy since the input one has been frozen

updatedPhotometricCutDict = {b: float(fgcmFitCycle.updatedPhotometricCut[i]) for
                             i, b in enumerate(_config.bands)}
updatedHighCutDict = {band: float(fgcmFitCycle.updatedHighCut[i]) for
                      i, band in enumerate(_config.bands)}

outConfig = copy.copy(_config)
outConfig.update(cycleNumber=(_config.cycleNumber + 1),
                 precomputeSuperStarInitialCycle=False,
                 freezeStdAtmosphere=False,
                 expGrayPhotometricCutDict=updatedPhotometricCutDict,
                 expGrayHighCutDict=updatedHighCutDict)

outConfig.connections.update(previousCycleNumber=str(_config.cycleNumber),
                             cycleNumber=str(_config.cycleNumber + 1))

if not multiCycle:
    configFileName = '%s_cycle%02d_config.py' % (outConfig.outfileBase,
                                                 outConfig.cycleNumber)
    outConfig.save(configFileName)

    if _config.isFinalCycle == 1:
        # We are done, ready to output products
        self.log.info("Everything is in place to run fgcmOutputProducts.py")
    else:
        self.log.info("Saved config for next cycle to %s" % (configFileName))
        self.log.info("Be sure to look at:")
        self.log.info("   config.expGrayPhotometricCut")
        self.log.info("   config.expGrayHighCut")
        self.log.info("If you are satisfied with the fit, please set:")
        self.log.info("   config.isFinalCycle = True")

fgcmFitCycle.freeSharedMemory()

return fgcmDatasetDict, outConfig

def _loadParameters(self, parCat):

Definition at line 1617 of file fgcmFitCycle.py.

◆ parInfo

lsst.fgcmcal.fgcmFitCycle.parInfo : `numpy.ndarray`
fgcmDatasetDict = {}

# Save the parameters
parInfo, pars = fgcmFitCycle.fgcmPars.parsToArrays()

parSchema = afwTable.Schema()

comma = ','
lutFilterNameString = comma.join([n.decode('utf-8')
                                  for n in parInfo['LUTFILTERNAMES'][0]])
fitBandString = comma.join([n.decode('utf-8')
                            for n in parInfo['FITBANDS'][0]])

parSchema = self._makeParSchema(parInfo, pars, fgcmFitCycle.fgcmPars.parSuperStarFlat,
                                lutFilterNameString, fitBandString)
parCat = self._makeParCatalog(parSchema, parInfo, pars,
                              fgcmFitCycle.fgcmPars.parSuperStarFlat,
                              lutFilterNameString, fitBandString)

fgcmDatasetDict['fgcmFitParameters'] = parCat

# Save the indices of the flagged stars
# (stars that have been (a) reserved from the fit for testing and
# (b) bad stars that have failed quality checks.)
flagStarSchema = self._makeFlagStarSchema()
flagStarStruct = fgcmFitCycle.fgcmStars.getFlagStarIndices()
flagStarCat = self._makeFlagStarCat(flagStarSchema, flagStarStruct)

fgcmDatasetDict['fgcmFlaggedStars'] = flagStarCat

# Save the zeropoint information and atmospheres only if desired
if self.outputZeropoints:
    superStarChebSize = fgcmFitCycle.fgcmZpts.zpStruct['FGCM_FZPT_SSTAR_CHEB'].shape[1]
    zptChebSize = fgcmFitCycle.fgcmZpts.zpStruct['FGCM_FZPT_CHEB'].shape[1]

    zptSchema = makeZptSchema(superStarChebSize, zptChebSize)
    zptCat = makeZptCat(zptSchema, fgcmFitCycle.fgcmZpts.zpStruct)

    fgcmDatasetDict['fgcmZeropoints'] = zptCat

    # Save atmosphere values
    # These are generated by the same code that generates zeropoints
    atmSchema = makeAtmSchema()
    atmCat = makeAtmCat(atmSchema, fgcmFitCycle.fgcmZpts.atmStruct)

    fgcmDatasetDict['fgcmAtmosphereParameters'] = atmCat

# Save the standard stars (if configured)
if self.outputStandards:
    stdStruct, goodBands = fgcmFitCycle.fgcmStars.retrieveStdStarCatalog(fgcmFitCycle.fgcmPars)
    stdSchema = makeStdSchema(len(goodBands))
    stdCat = makeStdCat(stdSchema, stdStruct, goodBands)

    fgcmDatasetDict['fgcmStandardStars'] = stdCat

return fgcmDatasetDict

def _makeParSchema(self, parInfo, pars, parSuperStarFlat,
               lutFilterNameString, fitBandString):

Definition at line 1871 of file fgcmFitCycle.py.

◆ pars

lsst.fgcmcal.fgcmFitCycle.pars : `numpy.ndarray`

Definition at line 1873 of file fgcmFitCycle.py.

◆ parSchema

lsst.fgcmcal.fgcmFitCycle.parSchema : `afwTable.schema`
parSchema = afwTable.Schema()

# parameter info section
parSchema.addField('nCcd', type=np.int32, doc='Number of CCDs')
parSchema.addField('lutFilterNames', type=str, doc='LUT Filter names in parameter file',
                   size=len(lutFilterNameString))
parSchema.addField('fitBands', type=str, doc='Bands that were fit',
                   size=len(fitBandString))
parSchema.addField('lnTauUnit', type=np.float64, doc='Step units for ln(AOD)')
parSchema.addField('lnTauSlopeUnit', type=np.float64,
                   doc='Step units for ln(AOD) slope')
parSchema.addField('alphaUnit', type=np.float64, doc='Step units for alpha')
parSchema.addField('lnPwvUnit', type=np.float64, doc='Step units for ln(pwv)')
parSchema.addField('lnPwvSlopeUnit', type=np.float64,
                   doc='Step units for ln(pwv) slope')
parSchema.addField('lnPwvQuadraticUnit', type=np.float64,
                   doc='Step units for ln(pwv) quadratic term')
parSchema.addField('lnPwvGlobalUnit', type=np.float64,
                   doc='Step units for global ln(pwv) parameters')
parSchema.addField('o3Unit', type=np.float64, doc='Step units for O3')
parSchema.addField('qeSysUnit', type=np.float64, doc='Step units for mirror gray')
parSchema.addField('filterOffsetUnit', type=np.float64, doc='Step units for filter offset')
parSchema.addField('hasExternalPwv', type=np.int32, doc='Parameters fit using external pwv')
parSchema.addField('hasExternalTau', type=np.int32, doc='Parameters fit using external tau')

# parameter section
parSchema.addField('parAlpha', type='ArrayD', doc='Alpha parameter vector',
                   size=pars['PARALPHA'].size)
parSchema.addField('parO3', type='ArrayD', doc='O3 parameter vector',
                   size=pars['PARO3'].size)
parSchema.addField('parLnTauIntercept', type='ArrayD',
                   doc='ln(Tau) intercept parameter vector',
                   size=pars['PARLNTAUINTERCEPT'].size)
parSchema.addField('parLnTauSlope', type='ArrayD',
                   doc='ln(Tau) slope parameter vector',
                   size=pars['PARLNTAUSLOPE'].size)
parSchema.addField('parLnPwvIntercept', type='ArrayD', doc='ln(pwv) intercept parameter vector',
                   size=pars['PARLNPWVINTERCEPT'].size)
parSchema.addField('parLnPwvSlope', type='ArrayD', doc='ln(pwv) slope parameter vector',
                   size=pars['PARLNPWVSLOPE'].size)
parSchema.addField('parLnPwvQuadratic', type='ArrayD', doc='ln(pwv) quadratic parameter vector',
                   size=pars['PARLNPWVQUADRATIC'].size)
parSchema.addField('parQeSysIntercept', type='ArrayD', doc='Mirror gray intercept parameter vector',
                   size=pars['PARQESYSINTERCEPT'].size)
parSchema.addField('compQeSysSlope', type='ArrayD', doc='Mirror gray slope parameter vector',
                   size=pars[0]['COMPQESYSSLOPE'].size)
parSchema.addField('parFilterOffset', type='ArrayD', doc='Filter offset parameter vector',
                   size=pars['PARFILTEROFFSET'].size)
parSchema.addField('parFilterOffsetFitFlag', type='ArrayI', doc='Filter offset parameter fit flag',
                   size=pars['PARFILTEROFFSETFITFLAG'].size)
parSchema.addField('parRetrievedLnPwvScale', type=np.float64,
                   doc='Global scale for retrieved ln(pwv)')
parSchema.addField('parRetrievedLnPwvOffset', type=np.float64,
                   doc='Global offset for retrieved ln(pwv)')
parSchema.addField('parRetrievedLnPwvNightlyOffset', type='ArrayD',
                   doc='Nightly offset for retrieved ln(pwv)',
                   size=pars['PARRETRIEVEDLNPWVNIGHTLYOFFSET'].size)
parSchema.addField('compAbsThroughput', type='ArrayD',
                   doc='Absolute throughput (relative to transmission curves)',
                   size=pars['COMPABSTHROUGHPUT'].size)
parSchema.addField('compRefOffset', type='ArrayD',
                   doc='Offset between reference stars and calibrated stars',
                   size=pars['COMPREFOFFSET'].size)
parSchema.addField('compRefSigma', type='ArrayD',
                   doc='Width of reference star/calibrated star distribution',
                   size=pars['COMPREFSIGMA'].size)
parSchema.addField('compMirrorChromaticity', type='ArrayD',
                   doc='Computed mirror chromaticity terms',
                   size=pars['COMPMIRRORCHROMATICITY'].size)
parSchema.addField('mirrorChromaticityPivot', type='ArrayD',
                   doc='Mirror chromaticity pivot mjd',
                   size=pars['MIRRORCHROMATICITYPIVOT'].size)
parSchema.addField('compCcdChromaticity', type='ArrayD',
                   doc='Computed CCD chromaticity terms',
                   size=pars['COMPCCDCHROMATICITY'].size)
parSchema.addField('compMedianSedSlope', type='ArrayD',
                   doc='Computed median SED slope (per band)',
                   size=pars['COMPMEDIANSEDSLOPE'].size)
parSchema.addField('compAperCorrPivot', type='ArrayD', doc='Aperture correction pivot',
                   size=pars['COMPAPERCORRPIVOT'].size)
parSchema.addField('compAperCorrSlope', type='ArrayD', doc='Aperture correction slope',
                   size=pars['COMPAPERCORRSLOPE'].size)
parSchema.addField('compAperCorrSlopeErr', type='ArrayD', doc='Aperture correction slope error',
                   size=pars['COMPAPERCORRSLOPEERR'].size)
parSchema.addField('compAperCorrRange', type='ArrayD', doc='Aperture correction range',
                   size=pars['COMPAPERCORRRANGE'].size)
parSchema.addField('compModelErrExptimePivot', type='ArrayD', doc='Model error exptime pivot',
                   size=pars['COMPMODELERREXPTIMEPIVOT'].size)
parSchema.addField('compModelErrFwhmPivot', type='ArrayD', doc='Model error fwhm pivot',
                   size=pars['COMPMODELERRFWHMPIVOT'].size)
parSchema.addField('compModelErrSkyPivot', type='ArrayD', doc='Model error sky pivot',
                   size=pars['COMPMODELERRSKYPIVOT'].size)
parSchema.addField('compModelErrPars', type='ArrayD', doc='Model error parameters',
                   size=pars['COMPMODELERRPARS'].size)
parSchema.addField('compExpGray', type='ArrayD', doc='Computed exposure gray',
                   size=pars['COMPEXPGRAY'].size)
parSchema.addField('compVarGray', type='ArrayD', doc='Computed exposure variance',
                   size=pars['COMPVARGRAY'].size)
parSchema.addField('compExpDeltaMagBkg', type='ArrayD',
                   doc='Computed exposure offset due to background',
                   size=pars['COMPEXPDELTAMAGBKG'].size)
parSchema.addField('compNGoodStarPerExp', type='ArrayI',
                   doc='Computed number of good stars per exposure',
                   size=pars['COMPNGOODSTARPEREXP'].size)
parSchema.addField('compExpRefOffset', type='ArrayD',
                   doc='Computed per-visit median offset between standard stars and ref stars.',
                   size=pars['COMPEXPREFOFFSET'].size)
parSchema.addField('compSigFgcm', type='ArrayD', doc='Computed sigma_fgcm (intrinsic repeatability)',
                   size=pars['COMPSIGFGCM'].size)
parSchema.addField('compSigmaCal', type='ArrayD', doc='Computed sigma_cal (systematic error floor)',
                   size=pars['COMPSIGMACAL'].size)
parSchema.addField('compRetrievedLnPwv', type='ArrayD', doc='Retrieved ln(pwv) (smoothed)',
                   size=pars['COMPRETRIEVEDLNPWV'].size)
parSchema.addField('compRetrievedLnPwvRaw', type='ArrayD', doc='Retrieved ln(pwv) (raw)',
                   size=pars['COMPRETRIEVEDLNPWVRAW'].size)
parSchema.addField('compRetrievedLnPwvFlag', type='ArrayI', doc='Retrieved ln(pwv) Flag',
                   size=pars['COMPRETRIEVEDLNPWVFLAG'].size)
parSchema.addField('compRetrievedTauNight', type='ArrayD', doc='Retrieved tau (per night)',
                   size=pars['COMPRETRIEVEDTAUNIGHT'].size)
parSchema.addField('compEpsilon', type='ArrayD',
                   doc='Computed epsilon background offset per visit (nJy/arcsec2)',
                   size=pars['COMPEPSILON'].size)
parSchema.addField('compMedDeltaAper', type='ArrayD',
                   doc='Median delta mag aper per visit',
                   size=pars['COMPMEDDELTAAPER'].size)
parSchema.addField('compGlobalEpsilon', type='ArrayD',
                   doc='Computed epsilon bkg offset (global) (nJy/arcsec2)',
                   size=pars['COMPGLOBALEPSILON'].size)
parSchema.addField('compEpsilonMap', type='ArrayD',
                   doc='Computed epsilon maps (nJy/arcsec2)',
                   size=pars['COMPEPSILONMAP'].size)
parSchema.addField('compEpsilonNStarMap', type='ArrayI',
                   doc='Number of stars per pixel in computed epsilon maps',
                   size=pars['COMPEPSILONNSTARMAP'].size)
parSchema.addField('compEpsilonCcdMap', type='ArrayD',
                   doc='Computed epsilon ccd maps (nJy/arcsec2)',
                   size=pars['COMPEPSILONCCDMAP'].size)
parSchema.addField('compEpsilonCcdNStarMap', type='ArrayI',
                   doc='Number of stars per ccd bin in epsilon ccd maps',
                   size=pars['COMPEPSILONCCDNSTARMAP'].size)
# superstarflat section
parSchema.addField('superstarSize', type='ArrayI', doc='Superstar matrix size',
                   size=4)
parSchema.addField('superstar', type='ArrayD', doc='Superstar matrix (flattened)',
                   size=parSuperStarFlat.size)

return parSchema

def _makeParCatalog(self, parSchema, parInfo, pars, parSuperStarFlat,
                lutFilterNameString, fitBandString):

Definition at line 1884 of file fgcmFitCycle.py.

◆ parSuperStarFlat

lsst.fgcmcal.fgcmFitCycle.parSuperStarFlat : `numpy.array`

Definition at line 1875 of file fgcmFitCycle.py.

◆ plotHandleDict

lsst.fgcmcal.fgcmFitCycle.plotHandleDict : `dict` [`str`, `lsst.daf.butler.DatasetRef`], optional

Definition at line 1327 of file fgcmFitCycle.py.