|
LSST Applications g00d0e8bbd7+8c5ae1fdc5,g013ef56533+603670b062,g083dd6704c+2e189452a7,g199a45376c+0ba108daf9,g1c5cce2383+bc9f6103a4,g1fd858c14a+cd69ed4fc1,g210f2d0738+c4742f2e9e,g262e1987ae+612fa42d85,g29ae962dfc+83d129e820,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+5eaa884f2a,g47891489e3+e32160a944,g53246c7159+8c5ae1fdc5,g5b326b94bb+dcc56af22d,g64539dfbff+c4742f2e9e,g67b6fd64d1+e32160a944,g74acd417e5+c122e1277d,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g88cb488625+47d24e4084,g89139ef638+e32160a944,g8d7436a09f+d14b4ff40a,g8ea07a8fe4+b212507b11,g90f42f885a+e1755607f3,g97be763408+34be90ab8c,g98df359435+ec1fa61bf1,ga2180abaac+8c5ae1fdc5,ga9e74d7ce9+43ac651df0,gbf99507273+8c5ae1fdc5,gc2a301910b+c4742f2e9e,gca7fc764a6+e32160a944,gd7ef33dd92+e32160a944,gdab6d2f7ff+c122e1277d,gdb1e2cdc75+1b18322db8,ge410e46f29+e32160a944,ge41e95a9f2+c4742f2e9e,geaed405ab2+0d91c11c6d,w.2025.44
LSST Data Management Base Package
|
Classes | |
| class | Observation |
Functions | |
| np.ndarray | get_filter_coords (np.ndarray filter_values, tuple[int, int]|None center=None) |
| tuple[int, int, int, int] | get_filter_bounds (np.ndarray coords) |
| convolve (np.ndarray image, np.ndarray psf, tuple[int, int, int, int] bounds) | |
| Image | _set_image_like (np.ndarray|Image images, tuple|None bands=None, Box|None bbox=None) |
|
protected |
Ensure that an image-like array is cast appropriately as an image
Parameters
----------
images:
The multiband image-like array to cast as an Image.
If it already has `bands` and `bbox` properties then it is returned
with no modifications.
bands:
The bands for the multiband-image.
If `images` is a numpy array, this parameter is mandatory.
If `images` is an `Image` and `bands` is not `None`,
then `bands` is ignored.
bbox:
Bounding box containing the image.
If `images` is a numpy array, this parameter is mandatory.
If `images` is an `Image` and `bbox` is not `None`,
then `bbox` is ignored.
Returns
-------
images: Image
The input images converted into an image.
Definition at line 130 of file observation.py.
| lsst.scarlet.lite.observation.convolve | ( | np.ndarray | image, |
| np.ndarray | psf, | ||
| tuple[int, int, int, int] | bounds ) |
Convolve an image with a PSF in real space
Parameters
----------
image:
The multi-band image to convolve.
psf:
The psf to convolve the image with.
bounds:
The filter bounds required by the ``apply_filter`` C++ method,
usually obtained by calling `get_filter_bounds`.
Definition at line 99 of file observation.py.
| tuple[int, int, int, int] lsst.scarlet.lite.observation.get_filter_bounds | ( | np.ndarray | coords | ) |
Get the slices in x and y to apply a filter
Parameters
----------
coords:
The coordinates of the filter,
defined by `get_filter_coords`.
Returns
-------
y_start, y_end, x_start, x_end:
The start and end of each slice that is passed to `apply_filter`.
Definition at line 75 of file observation.py.
| np.ndarray lsst.scarlet.lite.observation.get_filter_coords | ( | np.ndarray | filter_values, |
| tuple[int, int] | None | center = None ) |
Create filter coordinate grid needed for the apply filter function
Parameters
----------
filter_values:
The 2D array of the filter to apply.
center:
The center (y,x) of the filter. If `center` is `None` then
`filter_values` must have an odd number of rows and columns
and the center will be set to the center of `filter_values`.
Returns
-------
coords:
The coordinates of the pixels in `filter_values`,
where the coordinates of the `center` pixel are `(0,0)`.
Definition at line 38 of file observation.py.