LSST Applications g0d33ba9806+b932483eba,g0fba68d861+d53f2a615d,g1e78f5e6d3+1e869f36eb,g1ec0fe41b4+f536777771,g1fd858c14a+d5f4961c99,g35bb328faa+fcb1d3bbc8,g4af146b050+2e821d8f6b,g4d2262a081+b02c98aa00,g53246c7159+fcb1d3bbc8,g5a012ec0e7+b20b785ecb,g60b5630c4e+b932483eba,g67b6fd64d1+4086c0989b,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g87b7deb4dc+7d8c31d03d,g8852436030+a639f189fc,g89139ef638+4086c0989b,g9125e01d80+fcb1d3bbc8,g94187f82dc+b932483eba,g989de1cb63+4086c0989b,g9f33ca652e+898eabdf38,g9f7030ddb1+b068313d7a,ga2b97cdc51+b932483eba,ga44b1db4f6+2bd830756e,gabe3b4be73+1e0a283bba,gabf8522325+fa80ff7197,gb1101e3267+f4f1608365,gb58c049af0+f03b321e39,gb89ab40317+4086c0989b,gcf25f946ba+a639f189fc,gd6cbbdb0b4+af3c3595f5,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+4078fef7e5,ge278dab8ac+d65b3c2b70,ge410e46f29+4086c0989b,gf67bdafdda+4086c0989b,gfe06eef73a+6e83fc67a4,v29.0.0.rc5
LSST Data Management Base Package
|
Classes | |
class | Observation |
Functions | |
np.ndarray | get_filter_coords (np.ndarray filter_values, tuple[int, int]|None center=None) |
tuple[int, int, int, int] | get_filter_bounds (np.ndarray coords) |
convolve (np.ndarray image, np.ndarray psf, tuple[int, int, int, int] bounds) | |
Image | _set_image_like (np.ndarray|Image images, tuple|None bands=None, Box|None bbox=None) |
|
protected |
Ensure that an image-like array is cast appropriately as an image Parameters ---------- images: The multiband image-like array to cast as an Image. If it already has `bands` and `bbox` properties then it is returned with no modifications. bands: The bands for the multiband-image. If `images` is a numpy array, this parameter is mandatory. If `images` is an `Image` and `bands` is not `None`, then `bands` is ignored. bbox: Bounding box containing the image. If `images` is a numpy array, this parameter is mandatory. If `images` is an `Image` and `bbox` is not `None`, then `bbox` is ignored. Returns ------- images: Image The input images converted into an image.
Definition at line 130 of file observation.py.
lsst.scarlet.lite.observation.convolve | ( | np.ndarray | image, |
np.ndarray | psf, | ||
tuple[int, int, int, int] | bounds ) |
Convolve an image with a PSF in real space Parameters ---------- image: The multi-band image to convolve. psf: The psf to convolve the image with. bounds: The filter bounds required by the ``apply_filter`` C++ method, usually obtained by calling `get_filter_bounds`.
Definition at line 99 of file observation.py.
tuple[int, int, int, int] lsst.scarlet.lite.observation.get_filter_bounds | ( | np.ndarray | coords | ) |
Get the slices in x and y to apply a filter Parameters ---------- coords: The coordinates of the filter, defined by `get_filter_coords`. Returns ------- y_start, y_end, x_start, x_end: The start and end of each slice that is passed to `apply_filter`.
Definition at line 75 of file observation.py.
np.ndarray lsst.scarlet.lite.observation.get_filter_coords | ( | np.ndarray | filter_values, |
tuple[int, int] | None | center = None ) |
Create filter coordinate grid needed for the apply filter function Parameters ---------- filter_values: The 2D array of the filter to apply. center: The center (y,x) of the filter. If `center` is `None` then `filter_values` must have an odd number of rows and columns and the center will be set to the center of `filter_values`. Returns ------- coords: The coordinates of the pixels in `filter_values`, where the coordinates of the `center` pixel are `(0,0)`.
Definition at line 38 of file observation.py.