LSST Applications g0f08755f38+c89d42e150,g1635faa6d4+b6cf076a36,g1653933729+a8ce1bb630,g1a0ca8cf93+4c08b13bf7,g28da252d5a+f33f8200ef,g29321ee8c0+0187be18b1,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+e740673f1a,g5fbc88fb19+17cd334064,g7642f7d749+c89d42e150,g781aacb6e4+a8ce1bb630,g80478fca09+f8b2ab54e1,g82479be7b0+e2bd23ab8b,g858d7b2824+c89d42e150,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+065360aec4,gacf8899fa4+9553554aa7,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gbd46683f8f+ac57cbb13d,gc28159a63d+9634bc57db,gcf0d15dbbd+e37acf7834,gda3e153d99+c89d42e150,gda6a2b7d83+e37acf7834,gdaeeff99f8+1711a396fd,ge2409df99d+cb1e6652d6,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+02b11634a5,w.2024.45
LSST Data Management Base Package
Loading...
Searching...
No Matches
Classes | Functions
lsst.scarlet.lite.observation Namespace Reference

Classes

class  Observation
 

Functions

np.ndarray get_filter_coords (np.ndarray filter_values, tuple[int, int]|None center=None)
 
tuple[int, int, int, int] get_filter_bounds (np.ndarray coords)
 
 convolve (np.ndarray image, np.ndarray psf, tuple[int, int, int, int] bounds)
 
Image _set_image_like (np.ndarray|Image images, tuple|None bands=None, Box|None bbox=None)
 

Function Documentation

◆ _set_image_like()

Image lsst.scarlet.lite.observation._set_image_like ( np.ndarray | Image images,
tuple | None bands = None,
Box | None bbox = None )
protected
Ensure that an image-like array is cast appropriately as an image

Parameters
----------
images:
    The multiband image-like array to cast as an Image.
    If it already has `bands` and `bbox` properties then it is returned
    with no modifications.
bands:
    The bands for the multiband-image.
    If `images` is a numpy array, this parameter is mandatory.
    If `images` is an `Image` and `bands` is not `None`,
    then `bands` is ignored.
bbox:
    Bounding box containing the image.
    If `images` is a numpy array, this parameter is mandatory.
    If `images` is an `Image` and `bbox` is not `None`,
    then `bbox` is ignored.

Returns
-------
images: Image
    The input images converted into an image.

Definition at line 131 of file observation.py.

131def _set_image_like(images: np.ndarray | Image, bands: tuple | None = None, bbox: Box | None = None) -> Image:
132 """Ensure that an image-like array is cast appropriately as an image
133
134 Parameters
135 ----------
136 images:
137 The multiband image-like array to cast as an Image.
138 If it already has `bands` and `bbox` properties then it is returned
139 with no modifications.
140 bands:
141 The bands for the multiband-image.
142 If `images` is a numpy array, this parameter is mandatory.
143 If `images` is an `Image` and `bands` is not `None`,
144 then `bands` is ignored.
145 bbox:
146 Bounding box containing the image.
147 If `images` is a numpy array, this parameter is mandatory.
148 If `images` is an `Image` and `bbox` is not `None`,
149 then `bbox` is ignored.
150
151 Returns
152 -------
153 images: Image
154 The input images converted into an image.
155 """
156 if isinstance(images, Image):
157 # This is already an image
158 if bbox is not None and images.bbox != bbox:
159 raise ValueError(f"Bounding boxes {images.bbox} and {bbox} do not agree")
160 return images
161
162 if bbox is None:
163 bbox = Box(images.shape[-2:])
164 return Image(images, bands=bands, yx0=cast(tuple[int, int], bbox.origin))
165
166

◆ convolve()

lsst.scarlet.lite.observation.convolve ( np.ndarray image,
np.ndarray psf,
tuple[int, int, int, int] bounds )
Convolve an image with a PSF in real space

Parameters
----------
image:
    The multi-band image to convolve.
psf:
    The psf to convolve the image with.
bounds:
    The filter bounds required by the ``apply_filter`` C++ method,
    usually obtained by calling `get_filter_bounds`.

Definition at line 100 of file observation.py.

100def convolve(image: np.ndarray, psf: np.ndarray, bounds: tuple[int, int, int, int]):
101 """Convolve an image with a PSF in real space
102
103 Parameters
104 ----------
105 image:
106 The multi-band image to convolve.
107 psf:
108 The psf to convolve the image with.
109 bounds:
110 The filter bounds required by the ``apply_filter`` C++ method,
111 usually obtained by calling `get_filter_bounds`.
112 """
113 from lsst.scarlet.lite.operators_pybind11 import apply_filter # type: ignore
114
115 result = np.empty(image.shape, dtype=image.dtype)
116 for band in range(len(image)):
117 img = image[band]
118
120 img,
121 psf[band].reshape(-1),
122 bounds[0],
123 bounds[1],
124 bounds[2],
125 bounds[3],
126 result[band],
127 )
128 return result
129
130
void apply_filter(Eigen::Ref< const M > image, Eigen::Ref< const V > values, Eigen::Ref< const IndexVector > y_start, Eigen::Ref< const IndexVector > y_end, Eigen::Ref< const IndexVector > x_start, Eigen::Ref< const IndexVector > x_end, Eigen::Ref< M, 0, Eigen::Stride< Eigen::Dynamic, Eigen::Dynamic > > result)

◆ get_filter_bounds()

tuple[int, int, int, int] lsst.scarlet.lite.observation.get_filter_bounds ( np.ndarray coords)
Get the slices in x and y to apply a filter

Parameters
----------
coords:
    The coordinates of the filter,
    defined by `get_filter_coords`.

Returns
-------
y_start, y_end, x_start, x_end:
    The start and end of each slice that is passed to `apply_filter`.

Definition at line 76 of file observation.py.

76def get_filter_bounds(coords: np.ndarray) -> tuple[int, int, int, int]:
77 """Get the slices in x and y to apply a filter
78
79 Parameters
80 ----------
81 coords:
82 The coordinates of the filter,
83 defined by `get_filter_coords`.
84
85 Returns
86 -------
87 y_start, y_end, x_start, x_end:
88 The start and end of each slice that is passed to `apply_filter`.
89 """
90 z = np.zeros((len(coords),), dtype=int)
91 # Set the y slices
92 y_start = np.max([z, coords[:, 0]], axis=0)
93 y_end = -np.min([z, coords[:, 0]], axis=0)
94 # Set the x slices
95 x_start = np.max([z, coords[:, 1]], axis=0)
96 x_end = -np.min([z, coords[:, 1]], axis=0)
97 return y_start, y_end, x_start, x_end
98
99

◆ get_filter_coords()

np.ndarray lsst.scarlet.lite.observation.get_filter_coords ( np.ndarray filter_values,
tuple[int, int] | None center = None )
Create filter coordinate grid needed for the apply filter function

Parameters
----------
filter_values:
    The 2D array of the filter to apply.
center:
    The center (y,x) of the filter. If `center` is `None` then
    `filter_values` must have an odd number of rows and columns
    and the center will be set to the center of `filter_values`.

Returns
-------
coords:
    The coordinates of the pixels in `filter_values`,
    where the coordinates of the `center` pixel are `(0,0)`.

Definition at line 38 of file observation.py.

38def get_filter_coords(filter_values: np.ndarray, center: tuple[int, int] | None = None) -> np.ndarray:
39 """Create filter coordinate grid needed for the apply filter function
40
41 Parameters
42 ----------
43 filter_values:
44 The 2D array of the filter to apply.
45 center:
46 The center (y,x) of the filter. If `center` is `None` then
47 `filter_values` must have an odd number of rows and columns
48 and the center will be set to the center of `filter_values`.
49
50 Returns
51 -------
52 coords:
53 The coordinates of the pixels in `filter_values`,
54 where the coordinates of the `center` pixel are `(0,0)`.
55 """
56 if filter_values.ndim != 2:
57 raise ValueError("`filter_values` must be 2D")
58 if center is None:
59 if filter_values.shape[0] % 2 == 0 or filter_values.shape[1] % 2 == 0:
60 msg = """Ambiguous center of the `filter_values` array,
61 you must use a `filter_values` array
62 with an odd number of rows and columns or
63 calculate `coords` on your own."""
64 raise ValueError(msg)
65 center = tuple([filter_values.shape[0] // 2, filter_values.shape[1] // 2]) # type: ignore
66 center = cast(tuple[int, int], center)
67 x = np.arange(filter_values.shape[1])
68 y = np.arange(filter_values.shape[0])
69 x, y = np.meshgrid(x, y)
70 x -= center[1]
71 y -= center[0]
72 coords = np.dstack([y, x])
73 return coords
74
75