LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
|
Classes | |
class | Observation |
Functions | |
np.ndarray | get_filter_coords (np.ndarray filter_values, tuple[int, int]|None center=None) |
tuple[int, int, int, int] | get_filter_bounds (np.ndarray coords) |
convolve (np.ndarray image, np.ndarray psf, tuple[int, int, int, int] bounds) | |
Image | _set_image_like (np.ndarray|Image images, tuple|None bands=None, Box|None bbox=None) |
|
protected |
Ensure that an image-like array is cast appropriately as an image Parameters ---------- images: The multiband image-like array to cast as an Image. If it already has `bands` and `bbox` properties then it is returned with no modifications. bands: The bands for the multiband-image. If `images` is a numpy array, this parameter is mandatory. If `images` is an `Image` and `bands` is not `None`, then `bands` is ignored. bbox: Bounding box containing the image. If `images` is a numpy array, this parameter is mandatory. If `images` is an `Image` and `bbox` is not `None`, then `bbox` is ignored. Returns ------- images: Image The input images converted into an image.
Definition at line 131 of file observation.py.
lsst.scarlet.lite.observation.convolve | ( | np.ndarray | image, |
np.ndarray | psf, | ||
tuple[int, int, int, int] | bounds ) |
Convolve an image with a PSF in real space Parameters ---------- image: The multi-band image to convolve. psf: The psf to convolve the image with. bounds: The filter bounds required by the ``apply_filter`` C++ method, usually obtained by calling `get_filter_bounds`.
Definition at line 100 of file observation.py.
tuple[int, int, int, int] lsst.scarlet.lite.observation.get_filter_bounds | ( | np.ndarray | coords | ) |
Get the slices in x and y to apply a filter Parameters ---------- coords: The coordinates of the filter, defined by `get_filter_coords`. Returns ------- y_start, y_end, x_start, x_end: The start and end of each slice that is passed to `apply_filter`.
Definition at line 76 of file observation.py.
np.ndarray lsst.scarlet.lite.observation.get_filter_coords | ( | np.ndarray | filter_values, |
tuple[int, int] | None | center = None ) |
Create filter coordinate grid needed for the apply filter function Parameters ---------- filter_values: The 2D array of the filter to apply. center: The center (y,x) of the filter. If `center` is `None` then `filter_values` must have an odd number of rows and columns and the center will be set to the center of `filter_values`. Returns ------- coords: The coordinates of the pixels in `filter_values`, where the coordinates of the `center` pixel are `(0,0)`.
Definition at line 38 of file observation.py.