LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
|
Classes | |
class | Observation |
Functions | |
np.ndarray | get_filter_coords (np.ndarray filter_values, tuple[int, int]|None center=None) |
tuple[int, int, int, int] | get_filter_bounds (np.ndarray coords) |
convolve (np.ndarray image, np.ndarray psf, tuple[int, int, int, int] bounds) | |
Image | _set_image_like (np.ndarray|Image images, tuple|None bands=None, Box|None bbox=None) |
|
protected |
Ensure that an image-like array is cast appropriately as an image Parameters ---------- images: The multiband image-like array to cast as an Image. If it already has `bands` and `bbox` properties then it is returned with no modifications. bands: The bands for the multiband-image. If `images` is a numpy array, this parameter is mandatory. If `images` is an `Image` and `bands` is not `None`, then `bands` is ignored. bbox: Bounding box containing the image. If `images` is a numpy array, this parameter is mandatory. If `images` is an `Image` and `bbox` is not `None`, then `bbox` is ignored. Returns ------- images: Image The input images converted into an image.
Definition at line 130 of file observation.py.
lsst.scarlet.lite.observation.convolve | ( | np.ndarray | image, |
np.ndarray | psf, | ||
tuple[int, int, int, int] | bounds ) |
Convolve an image with a PSF in real space Parameters ---------- image: The multi-band image to convolve. psf: The psf to convolve the image with. bounds: The filter bounds required by the ``apply_filter`` C++ method, usually obtained by calling `get_filter_bounds`.
Definition at line 99 of file observation.py.
tuple[int, int, int, int] lsst.scarlet.lite.observation.get_filter_bounds | ( | np.ndarray | coords | ) |
Get the slices in x and y to apply a filter Parameters ---------- coords: The coordinates of the filter, defined by `get_filter_coords`. Returns ------- y_start, y_end, x_start, x_end: The start and end of each slice that is passed to `apply_filter`.
Definition at line 75 of file observation.py.
np.ndarray lsst.scarlet.lite.observation.get_filter_coords | ( | np.ndarray | filter_values, |
tuple[int, int] | None | center = None ) |
Create filter coordinate grid needed for the apply filter function Parameters ---------- filter_values: The 2D array of the filter to apply. center: The center (y,x) of the filter. If `center` is `None` then `filter_values` must have an odd number of rows and columns and the center will be set to the center of `filter_values`. Returns ------- coords: The coordinates of the pixels in `filter_values`, where the coordinates of the `center` pixel are `(0,0)`.
Definition at line 38 of file observation.py.