|
LSST Applications g00d0e8bbd7+edbf708997,g03191d30f7+9ce8016dbd,g1955dfad08+0bd186d245,g199a45376c+5137f08352,g1fd858c14a+a888a50aa2,g262e1987ae+45f9aba685,g29ae962dfc+1c7d47a24f,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3fd5ace14f+eed17d2c67,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+c4107e45b5,g67b6fd64d1+6dc8069a4c,g74acd417e5+f452e9c21a,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+2025e9ce17,g7cc15d900a+2d158402f9,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d4809ba88+c4107e45b5,g8d7436a09f+e96c132b44,g8ea07a8fe4+db21c37724,g98df359435+aae6d409c1,ga2180abaac+edbf708997,gac66b60396+966efe6077,gb632fb1845+88945a90f8,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gca7fc764a6+6dc8069a4c,gd7ef33dd92+6dc8069a4c,gda68eeecaf+7d1e613a8d,gdab6d2f7ff+f452e9c21a,gdbb4c4dda9+c4107e45b5,ge410e46f29+6dc8069a4c,ge41e95a9f2+c4107e45b5,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
|
Classes | |
| class | Observation |
Functions | |
| np.ndarray | get_filter_coords (np.ndarray filter_values, tuple[int, int]|None center=None) |
| tuple[int, int, int, int] | get_filter_bounds (np.ndarray coords) |
| convolve (np.ndarray image, np.ndarray psf, tuple[int, int, int, int] bounds) | |
| Image | _set_image_like (np.ndarray|Image images, tuple|None bands=None, Box|None bbox=None) |
|
protected |
Ensure that an image-like array is cast appropriately as an image
Parameters
----------
images:
The multiband image-like array to cast as an Image.
If it already has `bands` and `bbox` properties then it is returned
with no modifications.
bands:
The bands for the multiband-image.
If `images` is a numpy array, this parameter is mandatory.
If `images` is an `Image` and `bands` is not `None`,
then `bands` is ignored.
bbox:
Bounding box containing the image.
If `images` is a numpy array, this parameter is mandatory.
If `images` is an `Image` and `bbox` is not `None`,
then `bbox` is ignored.
Returns
-------
images: Image
The input images converted into an image.
Definition at line 130 of file observation.py.
| lsst.scarlet.lite.observation.convolve | ( | np.ndarray | image, |
| np.ndarray | psf, | ||
| tuple[int, int, int, int] | bounds ) |
Convolve an image with a PSF in real space
Parameters
----------
image:
The multi-band image to convolve.
psf:
The psf to convolve the image with.
bounds:
The filter bounds required by the ``apply_filter`` C++ method,
usually obtained by calling `get_filter_bounds`.
Definition at line 99 of file observation.py.
| tuple[int, int, int, int] lsst.scarlet.lite.observation.get_filter_bounds | ( | np.ndarray | coords | ) |
Get the slices in x and y to apply a filter
Parameters
----------
coords:
The coordinates of the filter,
defined by `get_filter_coords`.
Returns
-------
y_start, y_end, x_start, x_end:
The start and end of each slice that is passed to `apply_filter`.
Definition at line 75 of file observation.py.
| np.ndarray lsst.scarlet.lite.observation.get_filter_coords | ( | np.ndarray | filter_values, |
| tuple[int, int] | None | center = None ) |
Create filter coordinate grid needed for the apply filter function
Parameters
----------
filter_values:
The 2D array of the filter to apply.
center:
The center (y,x) of the filter. If `center` is `None` then
`filter_values` must have an odd number of rows and columns
and the center will be set to the center of `filter_values`.
Returns
-------
coords:
The coordinates of the pixels in `filter_values`,
where the coordinates of the `center` pixel are `(0,0)`.
Definition at line 38 of file observation.py.