LSST Applications g04dff08e69+fafbcb10e2,g0d33ba9806+3d21495239,g0fba68d861+2ea2a6c4b0,g1e78f5e6d3+b3e27b8ebc,g1ec0fe41b4+f536777771,g1fd858c14a+ae46bc2a71,g35bb328faa+fcb1d3bbc8,g4af146b050+9c38a215af,g4d2262a081+154bb484c1,g53246c7159+fcb1d3bbc8,g5a012ec0e7+b20b785ecb,g60b5630c4e+3d21495239,g6273192d42+8013d063df,g67b6fd64d1+4086c0989b,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g87b7deb4dc+04106995ce,g8852436030+54b48a5987,g89139ef638+4086c0989b,g9125e01d80+fcb1d3bbc8,g94187f82dc+3d21495239,g989de1cb63+4086c0989b,g9d31334357+3d21495239,g9f33ca652e+83205baa3c,gabe3b4be73+1e0a283bba,gabf8522325+fa80ff7197,gb1101e3267+85d1f90f4c,gb58c049af0+f03b321e39,gb89ab40317+4086c0989b,gc0bb628dac+d11454dffd,gcf25f946ba+54b48a5987,gd6cbbdb0b4+af3c3595f5,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+1b29a75088,ge278dab8ac+d65b3c2b70,ge410e46f29+4086c0989b,gf67bdafdda+4086c0989b,v29.0.0.rc6
LSST Data Management Base Package
|
Classes | |
class | Monotonicity |
Functions | |
np.ndarray | prox_connected (np.ndarray morph, Sequence[Sequence[int]] centers) |
tuple[int, int] | get_peak (np.ndarray image, tuple[int, int] center, int radius=1) |
tuple[np.ndarray, np.ndarray, tuple[int, int, int, int]] | prox_monotonic_mask (np.ndarray x, tuple[int, int] center, int center_radius=1, float variance=0.0, int max_iter=3) |
np.ndarray | uncentered_operator (np.ndarray x, Callable func, tuple[int, int]|None center=None, float|None fill=None, **kwargs) |
prox_sdss_symmetry (np.ndarray x) | |
np.ndarray | prox_uncentered_symmetry (np.ndarray x, tuple[int, int]|None center=None, float|None fill=None) |
tuple[int, int] lsst.scarlet.lite.operators.get_peak | ( | np.ndarray | image, |
tuple[int, int] | center, | ||
int | radius = 1 ) |
Search around a location for the maximum flux For monotonicity it is important to start at the brightest pixel in the center of the source. This may be off by a pixel or two, so we search for the correct center before applying monotonic_tree. Parameters ---------- image: The image of the source. center: The suggested center of the source. radius: The number of pixels around the `center` to search for a higher flux value. Returns ------- new_center: The true center of the source.
Definition at line 255 of file operators.py.
np.ndarray lsst.scarlet.lite.operators.prox_connected | ( | np.ndarray | morph, |
Sequence[Sequence[int]] | centers ) |
Remove all pixels not connected to the center of a source. Parameters ---------- morph: The morphology that is being constrained. centers: The `(cy, cx)` center of any sources that all pixels must be connected to. Returns ------- result: The morphology with all pixels that are not connected to a center postion set to zero.
Definition at line 11 of file operators.py.
tuple[np.ndarray, np.ndarray, tuple[int, int, int, int]] lsst.scarlet.lite.operators.prox_monotonic_mask | ( | np.ndarray | x, |
tuple[int, int] | center, | ||
int | center_radius = 1, | ||
float | variance = 0.0, | ||
int | max_iter = 3 ) |
Apply monotonicity from any path from the center Parameters ---------- x: The input image that the mask is created for. center: The location of the center of the mask. center_radius: Radius from the center pixel to search for a better center (ie. a pixel in `X` with higher flux than the pixel given by `center`). If `center_radius == 0` then the `center` pixel is assumed to be correct. variance: The average variance in the image. This is used to allow pixels to be non-monotonic up to `variance`, so setting `variance=0` will force strict monotonicity in the mask. max_iter: Maximum number of iterations to interpolate non-monotonic pixels. Returns ------- valid: Boolean array of pixels that are monotonic. model: The model with invalid pixels masked out. bounds: The bounds of the valid monotonic pixels.
Definition at line 288 of file operators.py.
lsst.scarlet.lite.operators.prox_sdss_symmetry | ( | np.ndarray | x | ) |
SDSS/HSC symmetry operator This function uses the *minimum* of the two symmetric pixels in the update. Parameters ---------- x: The array to make symmetric. Returns ------- result: The updated `x`.
Definition at line 423 of file operators.py.
np.ndarray lsst.scarlet.lite.operators.prox_uncentered_symmetry | ( | np.ndarray | x, |
tuple[int, int] | None | center = None, | ||
float | None | fill = None ) |
Symmetry with off-center peak Symmetrize X for all pixels with a symmetric partner. Parameters ---------- x: The parameter to update. center: The center pixel coordinates to apply the symmetry operator. fill: The value to fill the region that cannot be made symmetric. When `fill` is `None` then the region of `X` that is not symmetric is not constrained. Returns ------- result: The update function based on the specified parameters.
Definition at line 444 of file operators.py.
np.ndarray lsst.scarlet.lite.operators.uncentered_operator | ( | np.ndarray | x, |
Callable | func, | ||
tuple[int, int] | None | center = None, | ||
float | None | fill = None, | ||
** | kwargs ) |
Only apply the operator on a centered patch In some cases, for example symmetry, an operator might not make sense outside of a centered box. This operator only updates the portion of `X` inside the centered region. Parameters ---------- x: The parameter to update. func: The function (or operator) to apply to `x`. center: The location of the center of the sub-region to apply `func` to `x`. fill: The value to fill the region outside of centered `sub-region`, for example `0`. If `fill` is `None` then only the subregion is updated and the rest of `x` remains unchanged. Returns ------- result: `x`, with an operator applied based on the shifted center.
Definition at line 356 of file operators.py.