LSST Applications g042eb84c57+730a74494b,g04e9c324dd+8c5ae1fdc5,g134cb467dc+1f1e3e7524,g199a45376c+0ba108daf9,g1fd858c14a+fa7d31856b,g210f2d0738+f66ac109ec,g262e1987ae+83a3acc0e5,g29ae962dfc+d856a2cb1f,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+a1e0c9f713,g47891489e3+0d594cb711,g4d44eb3520+c57ec8f3ed,g4d7b6aa1c5+f66ac109ec,g53246c7159+8c5ae1fdc5,g56a1a4eaf3+fd7ad03fde,g64539dfbff+f66ac109ec,g67b6fd64d1+0d594cb711,g67fd3c3899+f66ac109ec,g6985122a63+0d594cb711,g74acd417e5+3098891321,g786e29fd12+668abc6043,g81db2e9a8d+98e2ab9f28,g87389fa792+8856018cbb,g89139ef638+0d594cb711,g8d7436a09f+80fda9ce03,g8ea07a8fe4+760ca7c3fc,g90f42f885a+033b1d468d,g97be763408+a8a29bda4b,g99822b682c+e3ec3c61f9,g9d5c6a246b+0d5dac0c3d,ga41d0fce20+9243b26dd2,gbf99507273+8c5ae1fdc5,gd7ef33dd92+0d594cb711,gdab6d2f7ff+3098891321,ge410e46f29+0d594cb711,geaed405ab2+c4bbc419c6,gf9a733ac38+8c5ae1fdc5,w.2025.38
LSST Data Management Base Package
|
Classes | |
class | Monotonicity |
Functions | |
np.ndarray | prox_connected (np.ndarray morph, Sequence[Sequence[int]] centers) |
tuple[int, int] | get_peak (np.ndarray image, tuple[int, int] center, int radius=1) |
tuple[np.ndarray, np.ndarray, tuple[int, int, int, int]] | prox_monotonic_mask (np.ndarray x, tuple[int, int] center, int center_radius=1, float variance=0.0, int max_iter=3) |
np.ndarray | uncentered_operator (np.ndarray x, Callable func, tuple[int, int]|None center=None, float|None fill=None, **kwargs) |
prox_sdss_symmetry (np.ndarray x) | |
np.ndarray | prox_uncentered_symmetry (np.ndarray x, tuple[int, int]|None center=None, float|None fill=None) |
tuple[int, int] lsst.scarlet.lite.operators.get_peak | ( | np.ndarray | image, |
tuple[int, int] | center, | ||
int | radius = 1 ) |
Search around a location for the maximum flux For monotonicity it is important to start at the brightest pixel in the center of the source. This may be off by a pixel or two, so we search for the correct center before applying monotonic_tree. Parameters ---------- image: The image of the source. center: The suggested center of the source. radius: The number of pixels around the `center` to search for a higher flux value. Returns ------- new_center: The true center of the source.
Definition at line 255 of file operators.py.
np.ndarray lsst.scarlet.lite.operators.prox_connected | ( | np.ndarray | morph, |
Sequence[Sequence[int]] | centers ) |
Remove all pixels not connected to the center of a source. Parameters ---------- morph: The morphology that is being constrained. centers: The `(cy, cx)` center of any sources that all pixels must be connected to. Returns ------- result: The morphology with all pixels that are not connected to a center postion set to zero.
Definition at line 11 of file operators.py.
tuple[np.ndarray, np.ndarray, tuple[int, int, int, int]] lsst.scarlet.lite.operators.prox_monotonic_mask | ( | np.ndarray | x, |
tuple[int, int] | center, | ||
int | center_radius = 1, | ||
float | variance = 0.0, | ||
int | max_iter = 3 ) |
Apply monotonicity from any path from the center Parameters ---------- x: The input image that the mask is created for. center: The location of the center of the mask. center_radius: Radius from the center pixel to search for a better center (ie. a pixel in `X` with higher flux than the pixel given by `center`). If `center_radius == 0` then the `center` pixel is assumed to be correct. variance: The average variance in the image. This is used to allow pixels to be non-monotonic up to `variance`, so setting `variance=0` will force strict monotonicity in the mask. max_iter: Maximum number of iterations to interpolate non-monotonic pixels. Returns ------- valid: Boolean array of pixels that are monotonic. model: The model with invalid pixels masked out. bounds: The bounds of the valid monotonic pixels.
Definition at line 288 of file operators.py.
lsst.scarlet.lite.operators.prox_sdss_symmetry | ( | np.ndarray | x | ) |
SDSS/HSC symmetry operator This function uses the *minimum* of the two symmetric pixels in the update. Parameters ---------- x: The array to make symmetric. Returns ------- result: The updated `x`.
Definition at line 423 of file operators.py.
np.ndarray lsst.scarlet.lite.operators.prox_uncentered_symmetry | ( | np.ndarray | x, |
tuple[int, int] | None | center = None, | ||
float | None | fill = None ) |
Symmetry with off-center peak Symmetrize X for all pixels with a symmetric partner. Parameters ---------- x: The parameter to update. center: The center pixel coordinates to apply the symmetry operator. fill: The value to fill the region that cannot be made symmetric. When `fill` is `None` then the region of `X` that is not symmetric is not constrained. Returns ------- result: The update function based on the specified parameters.
Definition at line 444 of file operators.py.
np.ndarray lsst.scarlet.lite.operators.uncentered_operator | ( | np.ndarray | x, |
Callable | func, | ||
tuple[int, int] | None | center = None, | ||
float | None | fill = None, | ||
** | kwargs ) |
Only apply the operator on a centered patch In some cases, for example symmetry, an operator might not make sense outside of a centered box. This operator only updates the portion of `X` inside the centered region. Parameters ---------- x: The parameter to update. func: The function (or operator) to apply to `x`. center: The location of the center of the sub-region to apply `func` to `x`. fill: The value to fill the region outside of centered `sub-region`, for example `0`. If `fill` is `None` then only the subregion is updated and the rest of `x` remains unchanged. Returns ------- result: `x`, with an operator applied based on the shifted center.
Definition at line 356 of file operators.py.