|
LSST Applications g00d0e8bbd7+8c5ae1fdc5,g013ef56533+603670b062,g083dd6704c+2e189452a7,g199a45376c+0ba108daf9,g1c5cce2383+bc9f6103a4,g1fd858c14a+cd69ed4fc1,g210f2d0738+c4742f2e9e,g262e1987ae+612fa42d85,g29ae962dfc+83d129e820,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+5eaa884f2a,g47891489e3+e32160a944,g53246c7159+8c5ae1fdc5,g5b326b94bb+dcc56af22d,g64539dfbff+c4742f2e9e,g67b6fd64d1+e32160a944,g74acd417e5+c122e1277d,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g88cb488625+47d24e4084,g89139ef638+e32160a944,g8d7436a09f+d14b4ff40a,g8ea07a8fe4+b212507b11,g90f42f885a+e1755607f3,g97be763408+34be90ab8c,g98df359435+ec1fa61bf1,ga2180abaac+8c5ae1fdc5,ga9e74d7ce9+43ac651df0,gbf99507273+8c5ae1fdc5,gc2a301910b+c4742f2e9e,gca7fc764a6+e32160a944,gd7ef33dd92+e32160a944,gdab6d2f7ff+c122e1277d,gdb1e2cdc75+1b18322db8,ge410e46f29+e32160a944,ge41e95a9f2+c4742f2e9e,geaed405ab2+0d91c11c6d,w.2025.44
LSST Data Management Base Package
|
Classes | |
| class | Monotonicity |
Functions | |
| np.ndarray | prox_connected (np.ndarray morph, Sequence[Sequence[int]] centers) |
| tuple[int, int] | get_peak (np.ndarray image, tuple[int, int] center, int radius=1) |
| tuple[np.ndarray, np.ndarray, tuple[int, int, int, int]] | prox_monotonic_mask (np.ndarray x, tuple[int, int] center, int center_radius=1, float variance=0.0, int max_iter=3) |
| np.ndarray | uncentered_operator (np.ndarray x, Callable func, tuple[int, int]|None center=None, float|None fill=None, **kwargs) |
| prox_sdss_symmetry (np.ndarray x) | |
| np.ndarray | prox_uncentered_symmetry (np.ndarray x, tuple[int, int]|None center=None, float|None fill=None) |
| tuple[int, int] lsst.scarlet.lite.operators.get_peak | ( | np.ndarray | image, |
| tuple[int, int] | center, | ||
| int | radius = 1 ) |
Search around a location for the maximum flux
For monotonicity it is important to start at the brightest pixel
in the center of the source. This may be off by a pixel or two,
so we search for the correct center before applying
monotonic_tree.
Parameters
----------
image:
The image of the source.
center:
The suggested center of the source.
radius:
The number of pixels around the `center` to search
for a higher flux value.
Returns
-------
new_center:
The true center of the source.
Definition at line 255 of file operators.py.
| np.ndarray lsst.scarlet.lite.operators.prox_connected | ( | np.ndarray | morph, |
| Sequence[Sequence[int]] | centers ) |
Remove all pixels not connected to the center of a source.
Parameters
----------
morph:
The morphology that is being constrained.
centers:
The `(cy, cx)` center of any sources that all pixels must be
connected to.
Returns
-------
result:
The morphology with all pixels that are not connected to a center
postion set to zero.
Definition at line 11 of file operators.py.
| tuple[np.ndarray, np.ndarray, tuple[int, int, int, int]] lsst.scarlet.lite.operators.prox_monotonic_mask | ( | np.ndarray | x, |
| tuple[int, int] | center, | ||
| int | center_radius = 1, | ||
| float | variance = 0.0, | ||
| int | max_iter = 3 ) |
Apply monotonicity from any path from the center
Parameters
----------
x:
The input image that the mask is created for.
center:
The location of the center of the mask.
center_radius:
Radius from the center pixel to search for a better center
(ie. a pixel in `X` with higher flux than the pixel given by
`center`).
If `center_radius == 0` then the `center` pixel is assumed
to be correct.
variance:
The average variance in the image.
This is used to allow pixels to be non-monotonic up to `variance`,
so setting `variance=0` will force strict monotonicity in the mask.
max_iter:
Maximum number of iterations to interpolate non-monotonic pixels.
Returns
-------
valid:
Boolean array of pixels that are monotonic.
model:
The model with invalid pixels masked out.
bounds:
The bounds of the valid monotonic pixels.
Definition at line 288 of file operators.py.
| lsst.scarlet.lite.operators.prox_sdss_symmetry | ( | np.ndarray | x | ) |
SDSS/HSC symmetry operator
This function uses the *minimum* of the two
symmetric pixels in the update.
Parameters
----------
x:
The array to make symmetric.
Returns
-------
result:
The updated `x`.
Definition at line 423 of file operators.py.
| np.ndarray lsst.scarlet.lite.operators.prox_uncentered_symmetry | ( | np.ndarray | x, |
| tuple[int, int] | None | center = None, | ||
| float | None | fill = None ) |
Symmetry with off-center peak
Symmetrize X for all pixels with a symmetric partner.
Parameters
----------
x:
The parameter to update.
center:
The center pixel coordinates to apply the symmetry operator.
fill:
The value to fill the region that cannot be made symmetric.
When `fill` is `None` then the region of `X` that is not symmetric
is not constrained.
Returns
-------
result:
The update function based on the specified parameters.
Definition at line 444 of file operators.py.
| np.ndarray lsst.scarlet.lite.operators.uncentered_operator | ( | np.ndarray | x, |
| Callable | func, | ||
| tuple[int, int] | None | center = None, | ||
| float | None | fill = None, | ||
| ** | kwargs ) |
Only apply the operator on a centered patch
In some cases, for example symmetry, an operator might not make
sense outside of a centered box. This operator only updates
the portion of `X` inside the centered region.
Parameters
----------
x:
The parameter to update.
func:
The function (or operator) to apply to `x`.
center:
The location of the center of the sub-region to
apply `func` to `x`.
fill:
The value to fill the region outside of centered
`sub-region`, for example `0`. If `fill` is `None`
then only the subregion is updated and the rest of
`x` remains unchanged.
Returns
-------
result:
`x`, with an operator applied based on the shifted center.
Definition at line 356 of file operators.py.