LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
ScaledPolynomialTransformFitter.cc
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2
3/*
4 * LSST Data Management System
5 * Copyright 2016 LSST/AURA
6 *
7 * This product includes software developed by the
8 * LSST Project (http://www.lsst.org/).
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the LSST License Statement and
21 * the GNU General Public License along with this program. If not,
22 * see <http://www.lsstcorp.org/LegalNotices/>.
23 */
24
25#include <map>
26
27#include "Eigen/LU" // for determinant, even though it's a 2x2 that doesn't use actual LU implementation
28
29#include "boost/math/tools/minima.hpp"
30
31#include "lsst/geom/Box.h"
38
39// When developing this code, it was used to add an in-line check for the
40// correctness of a particularly complex calculation that was difficult to
41// factor out into something unit-testable (the larger context that code is in
42// *is* unit tested, which should be guard against regressions). The test
43// code is still in place, guarded by a check against this preprocessor macro;
44// set it to 1 to re-enable that test during development, but be sure to
45// set it back to zero before committing.
46#define LSST_ScaledPolynomialTransformFitter_TEST_IN_PLACE 0
47
48namespace lsst {
49namespace meas {
50namespace astrom {
51
52// A singleton struct that manages the schema and keys for polynomial fitting catalogs.
54public:
63 // We use uint16 instead of Flag since it's the only bool we have here, we
64 // may want NumPy views, and afw::table doesn't support [u]int8 fields.
66
67 Keys(Keys const &) = delete;
68 Keys(Keys &&) = delete;
69 Keys &operator=(Keys const &) = delete;
70 Keys &operator=(Keys &&) = delete;
71
72 static Keys const &forMatches() {
73 static Keys const it(0);
74 return it;
75 }
76
77 static Keys const &forGrid() {
78 static Keys const it;
79 return it;
80 }
81
82private:
83 Keys(int)
84 : schema(),
85 refId(schema.addField<afw::table::RecordId>("ref_id", "ID of reference object in this match.")),
86 srcId(schema.addField<afw::table::RecordId>("src_id", "ID of source object in this match.")),
87 output(afw::table::Point2DKey::addFields(schema, "src",
88 "source positions in pixel coordinates.", "pix")),
89 input(afw::table::Point2DKey::addFields(schema, "intermediate",
90 "reference positions in intermediate world coordinates",
91 "deg")),
92 initial(afw::table::Point2DKey::addFields(
93 schema, "initial", "reference positions transformed by initial WCS", "pix")),
94 model(afw::table::Point2DKey::addFields(
95 schema, "model", "result of applying transform to reference positions", "pix")),
97 afw::table::CovarianceMatrixKey<float, 2>::addFields(schema, "src", {"x", "y"}, "pix")),
99 "rejected", "True if the match should be rejected from the fit.")) {}
100
101 Keys()
102 : schema(),
103 output(afw::table::Point2DKey::addFields(
104 schema, "output", "grid output positions in intermediate world coordinates", "deg")),
105 input(afw::table::Point2DKey::addFields(schema, "input",
106 "grid input positions in pixel coordinates.", "pix")),
107 model(afw::table::Point2DKey::addFields(
108 schema, "model", "result of applying transform to input positions", "deg")) {}
109};
110
111namespace {
112
113// Return the AffineTransforms that maps the given (x,y) coordinates to lie within (-1, 1)x(-1, 1)
116 for (auto const &record : data) {
117 bbox.include(geom::Point2D(record.get(key)));
118 };
120 geom::LinearTransform::makeScaling(0.5 * bbox.getWidth(), 0.5 * bbox.getHeight()))
121 .inverted() *
123}
124
125} // namespace
126
128 int maxOrder, afw::table::ReferenceMatchVector const &matches, afw::geom::SkyWcs const &initialWcs,
129 double intrinsicScatter) {
130 Keys const &keys = Keys::forMatches();
131 afw::table::BaseCatalog catalog(keys.schema);
132 catalog.reserve(matches.size());
133 float var2 = intrinsicScatter * intrinsicScatter;
134 auto initialIwcToSky = getIntermediateWorldCoordsToSky(initialWcs);
135 for (auto const &match : matches) {
136 auto record = catalog.addNew();
137 record->set(keys.refId, match.first->getId());
138 record->set(keys.srcId, match.second->getId());
139 record->set(keys.input, initialIwcToSky->applyInverse(match.first->getCoord()));
140 record->set(keys.initial, initialWcs.skyToPixel(match.first->getCoord()));
141 record->set(keys.output, match.second->getCentroid());
142 record->set(keys.outputErr, match.second->getCentroidErr() + var2 * Eigen::Matrix2f::Identity());
143 record->set(keys.rejected, false);
144 }
145 return ScaledPolynomialTransformFitter(catalog, keys, maxOrder, intrinsicScatter,
146 computeScaling(catalog, keys.input),
147 computeScaling(catalog, keys.output));
148}
149
151 int maxOrder, geom::Box2D const &bbox, int nGridX, int nGridY,
152 ScaledPolynomialTransform const &toInvert) {
153 Keys const &keys = Keys::forGrid();
154 afw::table::BaseCatalog catalog(keys.schema);
155 catalog.reserve(nGridX * nGridY);
156 geom::Extent2D dx(bbox.getWidth() / nGridX, 0.0);
157 geom::Extent2D dy(0.0, bbox.getHeight() / nGridY);
158 for (int iy = 0; iy < nGridY; ++iy) {
159 for (int ix = 0; ix < nGridX; ++ix) {
160 geom::Point2D point = bbox.getMin() + dx * ix + dy * iy;
161 auto record = catalog.addNew();
162 record->set(keys.output, point);
163 record->set(keys.input, toInvert(point));
164 }
165 }
166 return ScaledPolynomialTransformFitter(catalog, keys, maxOrder, 0.0, computeScaling(catalog, keys.input),
167 computeScaling(catalog, keys.output));
168}
169
170ScaledPolynomialTransformFitter::ScaledPolynomialTransformFitter(afw::table::BaseCatalog const &data,
171 Keys const &keys, int maxOrder,
172 double intrinsicScatter,
173 geom::AffineTransform const &inputScaling,
174 geom::AffineTransform const &outputScaling)
175 : _keys(keys),
176 _intrinsicScatter(intrinsicScatter),
177 _data(data),
178 _outputScaling(outputScaling),
179 _transform(PolynomialTransform(maxOrder), inputScaling, outputScaling.inverted()),
180 _vandermonde(data.size(), detail::computePackedSize(maxOrder)) {
181 // Create a matrix that evaluates the max-order polynomials of all the (scaled) input positions;
182 // we'll extract subsets of this later when fitting to a subset of the matches and a lower order.
183 for (std::size_t i = 0; i < data.size(); ++i) {
184 geom::Point2D input = getInputScaling()(_data[i].get(_keys.input));
185 // x[k] == pow(x, k), y[k] == pow(y, k)
186 detail::computePowers(_transform._poly._u, input.getX());
187 detail::computePowers(_transform._poly._v, input.getY());
188 // We pack coefficients in the following order:
189 // (0,0), (0,1), (1,0), (0,2), (1,1), (2,0)
190 // Note that this lets us choose the just first N(N+1)/2 columns to
191 // evaluate an Nth order polynomial, even if N < maxOrder.
192 for (int n = 0, j = 0; n <= maxOrder; ++n) {
193 for (int p = 0, q = n; p <= n; ++p, --q, ++j) {
194 _vandermonde(i, j) = _transform._poly._u[p] * _transform._poly._v[q];
195 }
196 }
197 }
198}
199
201 int maxOrder = _transform.getPoly().getOrder();
202 if (order < 0) {
203 order = maxOrder;
204 }
205 if (order > maxOrder) {
206 throw LSST_EXCEPT(
208 (boost::format("Order (%d) exceeded maximum order for the fitter (%d)") % order % maxOrder)
209 .str());
210 }
211
212 int const packedSize = detail::computePackedSize(order);
213 std::size_t nGood = 0;
214 if (_keys.rejected.isValid()) {
215 for (auto const &record : _data) {
216 if (!record.get(_keys.rejected)) {
217 ++nGood;
218 }
219 }
220 } else {
221 nGood = _data.size();
222 }
223 // One block of the block-diagonal (2x2) unweighted design matrix M;
224 // m[i,j] = u_i^{p(j)} v_i^{q(j)}. The two nonzero blocks are the same,
225 // because we're using the same polynomial basis for x and y.
226 Eigen::MatrixXd m = Eigen::MatrixXd::Zero(nGood, packedSize);
227 // vx, vy: (2x1) blocks of the unweighted data vector v
228 Eigen::VectorXd vx = Eigen::VectorXd::Zero(nGood);
229 Eigen::VectorXd vy = Eigen::VectorXd::Zero(nGood);
230 // sxx, syy, sxy: (2x2) blocks of the covariance matrix S, each of which is
231 // individually diagonal.
232 Eigen::ArrayXd sxx(nGood);
233 Eigen::ArrayXd syy(nGood);
234 Eigen::ArrayXd sxy(nGood);
235 Eigen::Matrix2d outS = _outputScaling.getLinear().getMatrix();
236 for (std::size_t i1 = 0, i2 = 0; i1 < _data.size(); ++i1) {
237 // check that the 'rejected' field (== 'not outlier-rejected') is both
238 // present in the schema and not rejected.
239 if (!_keys.rejected.isValid() || !_data[i1].get(_keys.rejected)) {
240 geom::Point2D output = _outputScaling(_data[i1].get(_keys.output));
241 vx[i2] = output.getX();
242 vy[i2] = output.getY();
243 m.row(i2) = _vandermonde.row(i1).head(packedSize);
244 if (_keys.outputErr.isValid()) {
245 Eigen::Matrix2d modelErr =
246 outS * _data[i1].get(_keys.outputErr).cast<double>() * outS.adjoint();
247 sxx[i2] = modelErr(0, 0);
248 sxy[i2] = modelErr(0, 1);
249 syy[i2] = modelErr(1, 1);
250 } else {
251 sxx[i2] = 1.0;
252 sxy[i2] = 0.0;
253 syy[i2] = 1.0;
254 }
255 ++i2;
256 }
257 }
258 // Do a blockwise inverse of S. Note that the result F is still symmetric
259 Eigen::ArrayXd fxx = 1.0 / (sxx - sxy.square() / syy);
260 Eigen::ArrayXd fyy = 1.0 / (syy - sxy.square() / sxx);
261 Eigen::ArrayXd fxy = -(sxy / sxx) * fyy;
262#ifdef LSST_ScaledPolynomialTransformFitter_TEST_IN_PLACE
263 assert((sxx * fxx + sxy * fxy).isApproxToConstant(1.0));
264 assert((syy * fyy + sxy * fxy).isApproxToConstant(1.0));
265 assert((sxx * fxy).isApprox(-sxy * fyy));
266 assert((sxy * fxx).isApprox(-syy * fxy));
267#endif
268 // Now that we've got all the block quantities, we'll form the full normal equations matrix.
269 // That's H = M^T F M:
270 Eigen::MatrixXd h(2 * packedSize, 2 * packedSize);
271 h.topLeftCorner(packedSize, packedSize) = m.adjoint() * fxx.matrix().asDiagonal() * m;
272 h.topRightCorner(packedSize, packedSize) = m.adjoint() * fxy.matrix().asDiagonal() * m;
273 h.bottomLeftCorner(packedSize, packedSize) = h.topRightCorner(packedSize, packedSize).adjoint();
274 h.bottomRightCorner(packedSize, packedSize) = m.adjoint() * fyy.matrix().asDiagonal() * m;
275 // And here's the corresponding RHS vector, g = M^T F v
276 Eigen::VectorXd g(2 * packedSize);
277 g.head(packedSize) = m.adjoint() * (fxx.matrix().asDiagonal() * vx + fxy.matrix().asDiagonal() * vy);
278 g.tail(packedSize) = m.adjoint() * (fxy.matrix().asDiagonal() * vx + fyy.matrix().asDiagonal() * vy);
279 // Solve the normal equations.
281 auto solution = lstsq.getSolution();
282 // Unpack the solution vector back into the polynomial coefficient matrices.
283 for (int n = 0, j = 0; n <= order; ++n) {
284 for (int p = 0, q = n; p <= n; ++p, --q, ++j) {
285 _transform._poly._xCoeffs(p, q) = solution[j];
286 _transform._poly._yCoeffs(p, q) = solution[j + packedSize];
287 }
288 }
289}
290
292 for (auto &record : _data) {
293 record.set(_keys.model, _transform(record.get(_keys.input)));
294 }
295}
296
298 if (!_keys.rejected.isValid()) {
300 "Cannot compute intrinsic scatter on fitter initialized with fromGrid.");
301 }
302 double newIntrinsicScatter = computeIntrinsicScatter();
303 float varDiff = newIntrinsicScatter * newIntrinsicScatter - _intrinsicScatter * _intrinsicScatter;
304 for (auto &record : _data) {
305 record.set(_keys.outputErr, record.get(_keys.outputErr) + varDiff * Eigen::Matrix2f::Identity());
306 }
307 _intrinsicScatter = newIntrinsicScatter;
308 return _intrinsicScatter;
309}
310
311double ScaledPolynomialTransformFitter::computeIntrinsicScatter() const {
312 // We model the variance matrix of each match as the sum of the intrinsic variance (which we're
313 // trying to fit) and the per-source measurement uncertainty.
314 // We start by computing the variance directly, which yields the sum.
315 // At the same time, we find the maximum per-source variance. Since the per-source uncertainties
316 // are actually 2x2 matrices, we use the square of the major axis of that ellipse.
317 double directVariance = 0.0; // direct estimate of total scatter (includes measurement errors)
318 double maxMeasurementVariance = 0.0; // maximum of the per-match measurement uncertainties
319 double oldIntrinsicVariance = _intrinsicScatter * _intrinsicScatter;
320 std::size_t nGood = 0;
321 for (auto const &record : _data) {
322 if (!_keys.rejected.isValid() || !record.get(_keys.rejected)) {
323 auto delta = record.get(_keys.output) - record.get(_keys.model);
324 directVariance += 0.5 * delta.computeSquaredNorm();
325 double cxx = _keys.outputErr.getElement(record, 0, 0) - oldIntrinsicVariance;
326 double cyy = _keys.outputErr.getElement(record, 1, 1) - oldIntrinsicVariance;
327 double cxy = _keys.outputErr.getElement(record, 0, 1);
328 // square of semimajor axis of uncertainty error ellipse
329 double ca2 = 0.5 * (cxx + cyy + std::sqrt(cxx * cxx + cyy * cyy + 4 * cxy * cxy - 2 * cxx * cyy));
330 maxMeasurementVariance = std::max(maxMeasurementVariance, ca2);
331 ++nGood;
332 }
333 }
334 directVariance /= nGood;
335
336 // Function that computes the -log likelihood of the current deltas with
337 // the variance modeled as described above.
338 auto logLikelihood = [this](double intrinsicVariance) {
339 // Uncertainties in the table right now include the old intrinsic scatter; need to
340 // subtract it off as we add the new one in.
341 double varDiff = intrinsicVariance - this->_intrinsicScatter * this->_intrinsicScatter;
342 double q = 0.0;
343 for (auto &record : this->_data) {
344 double x = record.get(this->_keys.output.getX()) - record.get(_keys.model.getX());
345 double y = record.get(this->_keys.output.getY()) - record.get(_keys.model.getY());
346 double cxx = this->_keys.outputErr.getElement(record, 0, 0) + varDiff;
347 double cyy = this->_keys.outputErr.getElement(record, 1, 1) + varDiff;
348 double cxy = this->_keys.outputErr.getElement(record, 0, 1);
349 double det = cxx * cyy - cxy * cxy;
350 q += (x * x * cyy - 2 * x * y * cxy + y * y * cxx) / det + std::log(det);
351 }
352 return q;
353 };
354
355 // directVariance brackets the intrinsic variance from above, and this quantity
356 // brackets it from below:
357 double minIntrinsicVariance = std::max(0.0, directVariance - maxMeasurementVariance);
358
359 // Minimize the negative log likelihood to find the best-fit intrinsic variance.
360 static constexpr int BITS_REQUIRED = 16; // solution good to ~1E-4
361 boost::uintmax_t maxIterations = 20;
362 auto result = boost::math::tools::brent_find_minima(logLikelihood, minIntrinsicVariance, directVariance,
363 BITS_REQUIRED, maxIterations);
364 return std::sqrt(result.first); // return RMS instead of variance
365}
366
368 OutlierRejectionControl const &ctrl) {
369 // If the 'rejected' field isn't present in the schema (because the fitter
370 // was constructed with fromGrid), we can't do outlier rejection.
371 if (!_keys.rejected.isValid()) {
373 "Cannot reject outliers on fitter initialized with fromGrid.");
374 }
375 if (static_cast<std::size_t>(ctrl.nClipMin) >= _data.size()) {
376 throw LSST_EXCEPT(
378 (boost::format("Not enough values (%d) to clip %d.") % _data.size() % ctrl.nClipMin).str());
379 }
381 for (auto &record : _data) {
382 Eigen::Matrix2d cov = record.get(_keys.outputErr).cast<double>();
383 Eigen::Vector2d d = (record.get(_keys.output) - record.get(_keys.model)).asEigen();
384 double r2 = d.dot(cov.inverse() * d);
385 rankings.insert(std::make_pair(r2, &record));
386 }
387 auto cutoff = rankings.upper_bound(ctrl.nSigma * ctrl.nSigma);
388 int nClip = 0, nGood = 0;
389 for (auto iter = rankings.begin(); iter != cutoff; ++iter) {
390 iter->second->set(_keys.rejected, false);
391 ++nGood;
392 }
393 for (auto iter = cutoff; iter != rankings.end(); ++iter) {
394 iter->second->set(_keys.rejected, true);
395 ++nClip;
396 }
397 assert(static_cast<std::size_t>(nGood + nClip) == _data.size());
398 while (nClip < ctrl.nClipMin) {
399 --cutoff;
400 cutoff->second->set(_keys.rejected, true);
401 ++nClip;
402 }
403 while (nClip > ctrl.nClipMax && cutoff != rankings.end()) {
404 cutoff->second->set(_keys.rejected, false);
405 ++cutoff;
406 --nClip;
407 }
409 if (cutoff != rankings.end()) {
410 result.first = std::sqrt(cutoff->first);
411 }
412 return result;
413}
414
415} // namespace astrom
416} // namespace meas
417} // namespace lsst
py::object result
Definition _schema.cc:429
AmpInfoBoxKey bbox
Definition Amplifier.cc:117
char * data
Definition BaseRecord.cc:61
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition Exception.h:48
int y
Definition SpanSet.cc:48
int m
Definition SpanSet.cc:48
T begin(T... args)
A 2-dimensional celestial WCS that transform pixels to ICRS RA/Dec, using the LSST standard for pixel...
Definition SkyWcs.h:117
lsst::geom::Point2D skyToPixel(lsst::geom::SpherePoint const &sky) const
Compute pixel position(s) from sky position(s)
Definition SkyWcs.h:349
static LeastSquares fromNormalEquations(ndarray::Array< T1, 2, C1 > const &fisher, ndarray::Array< T2, 1, C2 > const &rhs, Factorization factorization=NORMAL_EIGENSYSTEM)
Initialize from the terms in the normal equations, given as ndarrays.
Tag types used to declare specialized field types.
Definition misc.h:31
std::shared_ptr< RecordT > const get(size_type i) const
Return a pointer to the record at index i.
Definition Catalog.h:463
size_type size() const
Return the number of elements in the catalog.
Definition Catalog.h:412
Eigen::Matrix< T, N, N > get(BaseRecord const &record) const override
Get a covariance matrix from the given record.
T getElement(BaseRecord const &record, int i, int j) const
Return the element in row i and column j.
bool isValid() const noexcept
Return True if all the constituent error Keys are valid.
bool isValid() const noexcept
Return true if the key was initialized to valid offset.
Definition Key.h:97
Key< T > getY() const noexcept
Return the underlying y Key.
Definition aggregates.h:112
Key< T > getX() const noexcept
Return the underlying x Key.
Definition aggregates.h:109
Defines the fields and offsets for a table.
Definition Schema.h:51
Key< T > addField(Field< T > const &field, bool doReplace=false)
Add a new field to the Schema, and return the associated Key.
Definition Schema.cc:479
An affine coordinate transformation consisting of a linear transformation and an offset.
AffineTransform const inverted() const
Return the inverse transform.
LinearTransform const & getLinear() const noexcept
A floating-point coordinate rectangle geometry.
Definition Box.h:413
void include(Point2D const &point) noexcept
Expand this to ensure that this->contains(point).
Definition Box.cc:380
Matrix const & getMatrix() const noexcept
static LinearTransform makeScaling(double s) noexcept
Control object for outlier rejection in ScaledPolynomialTransformFitter.
int nClipMax
"Never clip more than this many matches." ;
int nClipMin
"Always clip at least this many matches." ;
A 2-d coordinate transform represented by a pair of standard polynomials (one for each coordinate).
int getOrder() const
Return the order of the polynomials.
A fitter class for scaled polynomial transforms.
static ScaledPolynomialTransformFitter fromMatches(int maxOrder, afw::table::ReferenceMatchVector const &matches, afw::geom::SkyWcs const &initialWcs, double intrinsicScatter)
Initialize a fit from intermediate world coordinates to pixels using source/reference matches.
std::pair< double, size_t > rejectOutliers(OutlierRejectionControl const &ctrl)
Mark outliers in the data catalog using sigma clipping.
void updateModel()
Update the 'model' field in the data catalog using the current best- fit transform.
geom::AffineTransform const & getInputScaling() const
Return the input scaling transform that maps input data points to [-1, 1].
void fit(int order=-1)
Perform a linear least-squares fit of the polynomial coefficients.
double updateIntrinsicScatter()
Infer the intrinsic scatter in the offset between the data points and the best-fit model,...
static ScaledPolynomialTransformFitter fromGrid(int maxOrder, geom::Box2D const &bbox, int nGridX, int nGridY, ScaledPolynomialTransform const &toInvert)
Initialize a fit that inverts an existing transform by evaluating and fitting to points on a grid.
A 2-d coordinate transform represented by a lazy composition of an AffineTransform,...
PolynomialTransform const & getPoly() const
Return the polynomial transform applied after the input scaling.
Reports attempts to exceed implementation-defined length limits for some classes.
Definition Runtime.h:76
Reports errors in the logical structure of the program.
Definition Runtime.h:46
T end(T... args)
T insert(T... args)
T log(T... args)
T make_pair(T... args)
T max(T... args)
CatalogT< BaseRecord > BaseCatalog
Definition fwd.h:72
PointKey< double > Point2DKey
Definition aggregates.h:120
int computePackedSize(int order)
Compute this size of a packed 2-d polynomial coefficient array.
void computePowers(Eigen::VectorXd &r, double x)
Fill an array with integer powers of x, so .
T size(T... args)
T sqrt(T... args)
T upper_bound(T... args)
table::Key< int > order