LSST Applications g013ef56533+d2224463a4,g199a45376c+0ba108daf9,g19c4beb06c+9f335b2115,g1fd858c14a+2459ca3e43,g210f2d0738+2d3d333a78,g262e1987ae+abbb004f04,g2825c19fe3+eedc38578d,g29ae962dfc+0cb55f06ef,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+19c3a54948,g47891489e3+501a489530,g4cdb532a89+a047e97985,g511e8cfd20+ce1f47b6d6,g53246c7159+8c5ae1fdc5,g54cd7ddccb+890c8e1e5d,g5fd55ab2c7+951cc3f256,g64539dfbff+2d3d333a78,g67b6fd64d1+501a489530,g67fd3c3899+2d3d333a78,g74acd417e5+0ea5dee12c,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+501a489530,g8d7436a09f+5ea4c44d25,g8ea07a8fe4+81eaaadc04,g90f42f885a+34c0557caf,g9486f8a5af+165c016931,g97be763408+d5e351dcc8,gbf99507273+8c5ae1fdc5,gc2a301910b+2d3d333a78,gca7fc764a6+501a489530,gce8aa8abaa+8c5ae1fdc5,gd7ef33dd92+501a489530,gdab6d2f7ff+0ea5dee12c,ge410e46f29+501a489530,geaed405ab2+e3b4b2a692,gf9a733ac38+8c5ae1fdc5,w.2025.41
LSST Data Management Base Package
Loading...
Searching...
No Matches
subtractImages.py
Go to the documentation of this file.
1# This file is part of ip_diffim.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22from astropy import units as u
23import numpy as np
24
25import lsst.afw.detection as afwDetection
26import lsst.afw.image
27import lsst.afw.math
28import lsst.geom
29from lsst.ip.diffim.utils import (evaluateMeanPsfFwhm, getPsfFwhm, computeDifferenceImageMetrics,
30 checkMask, setSourceFootprints)
31from lsst.meas.algorithms import ScaleVarianceTask, ScienceSourceSelectorTask
32import lsst.pex.config
33import lsst.pipe.base
35from lsst.pipe.base import connectionTypes
36from . import MakeKernelTask, DecorrelateALKernelTask
37from lsst.utils.timer import timeMethod
38
39__all__ = ["AlardLuptonSubtractConfig", "AlardLuptonSubtractTask",
40 "AlardLuptonPreconvolveSubtractConfig", "AlardLuptonPreconvolveSubtractTask",
41 "SimplifiedSubtractConfig", "SimplifiedSubtractTask",
42 "InsufficientKernelSourcesError"]
43
44_dimensions = ("instrument", "visit", "detector")
45_defaultTemplates = {"coaddName": "deep", "fakesType": ""}
46
47
48class InsufficientKernelSourcesError(lsst.pipe.base.AlgorithmError):
49 """Raised when there are too few sources to calculate the PSF matching
50 kernel.
51 """
52 def __init__(self, *, nSources, nRequired):
53 msg = (f"Only {nSources} sources were selected for PSF matching,"
54 f" but {nRequired} are required.")
55 super().__init__(msg)
56 self.nSources = nSources
57 self.nRequired = nRequired
58
59 @property
60 def metadata(self):
61 return {"nSources": self.nSources,
62 "nRequired": self.nRequired
63 }
64
65
66class SubtractInputConnections(lsst.pipe.base.PipelineTaskConnections,
67 dimensions=_dimensions,
68 defaultTemplates=_defaultTemplates):
69 template = connectionTypes.Input(
70 doc="Input warped template to subtract.",
71 dimensions=("instrument", "visit", "detector"),
72 storageClass="ExposureF",
73 name="{fakesType}{coaddName}Diff_templateExp"
74 )
75 science = connectionTypes.Input(
76 doc="Input science exposure to subtract from.",
77 dimensions=("instrument", "visit", "detector"),
78 storageClass="ExposureF",
79 name="{fakesType}calexp"
80 )
81 sources = connectionTypes.Input(
82 doc="Sources measured on the science exposure; "
83 "used to select sources for making the matching kernel.",
84 dimensions=("instrument", "visit", "detector"),
85 storageClass="SourceCatalog",
86 name="{fakesType}src"
87 )
88 visitSummary = connectionTypes.Input(
89 doc=("Per-visit catalog with final calibration objects. "
90 "These catalogs use the detector id for the catalog id, "
91 "sorted on id for fast lookup."),
92 dimensions=("instrument", "visit"),
93 storageClass="ExposureCatalog",
94 name="finalVisitSummary",
95 )
96
97 def __init__(self, *, config=None):
98 super().__init__(config=config)
99 if not config.doApplyExternalCalibrations:
100 del self.visitSummary
101
102
103class SubtractImageOutputConnections(lsst.pipe.base.PipelineTaskConnections,
104 dimensions=_dimensions,
105 defaultTemplates=_defaultTemplates):
106 difference = connectionTypes.Output(
107 doc="Result of subtracting convolved template from science image.",
108 dimensions=("instrument", "visit", "detector"),
109 storageClass="ExposureF",
110 name="{fakesType}{coaddName}Diff_differenceTempExp",
111 )
112 matchedTemplate = connectionTypes.Output(
113 doc="Warped and PSF-matched template used to create `subtractedExposure`.",
114 dimensions=("instrument", "visit", "detector"),
115 storageClass="ExposureF",
116 name="{fakesType}{coaddName}Diff_matchedExp",
117 )
118 psfMatchingKernel = connectionTypes.Output(
119 doc="Kernel used to PSF match the science and template images.",
120 dimensions=("instrument", "visit", "detector"),
121 storageClass="MatchingKernel",
122 name="{fakesType}{coaddName}Diff_psfMatchKernel",
123 )
124 kernelSources = connectionTypes.Output(
125 doc="Final selection of sources used for psf matching.",
126 dimensions=("instrument", "visit", "detector"),
127 storageClass="SourceCatalog",
128 name="{fakesType}{coaddName}Diff_psfMatchSources"
129 )
130
131
132class SubtractScoreOutputConnections(lsst.pipe.base.PipelineTaskConnections,
133 dimensions=_dimensions,
134 defaultTemplates=_defaultTemplates):
135 scoreExposure = connectionTypes.Output(
136 doc="The maximum likelihood image, used for the detection of diaSources.",
137 dimensions=("instrument", "visit", "detector"),
138 storageClass="ExposureF",
139 name="{fakesType}{coaddName}Diff_scoreExp",
140 )
141 psfMatchingKernel = connectionTypes.Output(
142 doc="Kernel used to PSF match the science and template images.",
143 dimensions=("instrument", "visit", "detector"),
144 storageClass="MatchingKernel",
145 name="{fakesType}{coaddName}Diff_psfScoreMatchKernel",
146 )
147 kernelSources = connectionTypes.Output(
148 doc="Final selection of sources used for psf matching.",
149 dimensions=("instrument", "visit", "detector"),
150 storageClass="SourceCatalog",
151 name="{fakesType}{coaddName}Diff_psfScoreMatchSources"
152 )
153
154
159class SimplifiedSubtractConnections(SubtractInputConnections, SubtractImageOutputConnections):
160 inputPsfMatchingKernel = connectionTypes.Input(
161 doc="Kernel used to PSF match the science and template images.",
162 dimensions=("instrument", "visit", "detector"),
163 storageClass="MatchingKernel",
164 name="{fakesType}{coaddName}Diff_psfMatchKernel",
165 )
166
167 def __init__(self, *, config=None):
168 super().__init__(config=config)
169 del self.sources
170 if config.useExistingKernel:
171 del self.psfMatchingKernel
172 del self.kernelSources
173 else:
175
176
179 target=MakeKernelTask,
180 doc="Task to construct a matching kernel for convolution.",
181 )
182 doDecorrelation = lsst.pex.config.Field(
183 dtype=bool,
184 default=True,
185 doc="Perform diffim decorrelation to undo pixel correlation due to A&L "
186 "kernel convolution? If True, also update the diffim PSF."
187 )
189 target=DecorrelateALKernelTask,
190 doc="Task to decorrelate the image difference.",
191 )
192 requiredTemplateFraction = lsst.pex.config.Field(
193 dtype=float,
194 default=0.1,
195 doc="Raise NoWorkFound and do not attempt image subtraction if template covers less than this "
196 " fraction of pixels. Setting to 0 will always attempt image subtraction."
197 )
198 minTemplateFractionForExpectedSuccess = lsst.pex.config.Field(
199 dtype=float,
200 default=0.2,
201 doc="Raise NoWorkFound if PSF-matching fails and template covers less than this fraction of pixels."
202 " If the fraction of pixels covered by the template is less than this value (and greater than"
203 " requiredTemplateFraction) this task is attempted but failure is anticipated and tolerated."
204 )
205 doScaleVariance = lsst.pex.config.Field(
206 dtype=bool,
207 default=True,
208 doc="Scale variance of the image difference?"
209 )
211 target=ScaleVarianceTask,
212 doc="Subtask to rescale the variance of the template to the statistically expected level."
213 )
214 doSubtractBackground = lsst.pex.config.Field(
215 doc="Subtract the background fit when solving the kernel? "
216 "It is generally better to instead subtract the background in detectAndMeasure.",
217 dtype=bool,
218 default=False,
219 )
220 doApplyExternalCalibrations = lsst.pex.config.Field(
221 doc=(
222 "Replace science Exposure's calibration objects with those"
223 " in visitSummary. Ignored if `doApplyFinalizedPsf is True."
224 ),
225 dtype=bool,
226 default=False,
227 )
229 target=ScienceSourceSelectorTask,
230 doc="Task to select sources to be used for PSF matching.",
231 )
232 fallbackSourceSelector = lsst.pex.config.ConfigurableField(
233 target=ScienceSourceSelectorTask,
234 doc="Task to select sources to be used for PSF matching."
235 "Used only if the kernel calculation fails and"
236 "`allowKernelSourceDetection` is set. The fallback source detection"
237 " will not include all of the same plugins as the original source "
238 " detection, so not all of the same flags can be used.",
239 )
240 detectionThreshold = lsst.pex.config.Field(
241 dtype=float,
242 default=10,
243 doc="Minimum signal to noise ratio of detected sources "
244 "to use for calculating the PSF matching kernel.",
245 deprecated="No longer used. Will be removed after v30"
246 )
247 detectionThresholdMax = lsst.pex.config.Field(
248 dtype=float,
249 default=500,
250 doc="Maximum signal to noise ratio of detected sources "
251 "to use for calculating the PSF matching kernel.",
252 deprecated="No longer used. Will be removed after v30"
253 )
254 restrictKernelEdgeSources = lsst.pex.config.Field(
255 dtype=bool,
256 default=True,
257 doc="Exclude sources close to the edge from the kernel calculation?"
258 )
259 maxKernelSources = lsst.pex.config.Field(
260 dtype=int,
261 default=1000,
262 doc="Maximum number of sources to use for calculating the PSF matching kernel."
263 "Set to -1 to disable."
264 )
265 minKernelSources = lsst.pex.config.Field(
266 dtype=int,
267 default=3,
268 doc="Minimum number of sources needed for calculating the PSF matching kernel."
269 )
270 excludeMaskPlanes = lsst.pex.config.ListField(
271 dtype=str,
272 default=("NO_DATA", "BAD", "SAT", "EDGE", "FAKE", "HIGH_VARIANCE"),
273 doc="Template mask planes to exclude when selecting sources for PSF matching.",
274 )
276 dtype=str,
277 default=("NO_DATA", "BAD", "SAT", "EDGE"),
278 doc="Mask planes to interpolate over."
279 )
280 preserveTemplateMask = lsst.pex.config.ListField(
281 dtype=str,
282 default=("NO_DATA", "BAD", "HIGH_VARIANCE"),
283 doc="Mask planes from the template to propagate to the image difference."
284 )
285 renameTemplateMask = lsst.pex.config.ListField(
286 dtype=str,
287 default=("SAT", "INJECTED", "INJECTED_CORE",),
288 doc="Mask planes from the template to propagate to the image difference"
289 "with '_TEMPLATE' appended to the name."
290 )
291 allowKernelSourceDetection = lsst.pex.config.Field(
292 dtype=bool,
293 default=False,
294 doc="Re-run source detection for kernel candidates if an error is"
295 " encountered while calculating the matching kernel."
296 )
297
298 def setDefaults(self):
299 self.makeKernel.kernel.name = "AL"
300 # Always include background fitting in the kernel fit,
301 # even if it is not subtracted
302 self.makeKernel.kernel.active.fitForBackground = True
303 self.makeKernel.kernel.active.spatialKernelOrder = 1
304 self.makeKernel.kernel.active.spatialBgOrder = 2
305 # Shared source selector settings
306 doSkySources = False # Do not include sky sources
307 doSignalToNoise = True # apply signal to noise filter
308 doUnresolved = True # apply star-galaxy separation
309 signalToNoiseMinimum = 10
310 signalToNoiseMaximum = 500
311 self.sourceSelector.doIsolated = True # apply isolated star selection
312 self.sourceSelector.doRequirePrimary = True # apply primary flag selection
313 self.sourceSelector.doUnresolved = doUnresolved
314 self.sourceSelector.doSkySources = doSkySources
315 self.sourceSelector.doSignalToNoise = doSignalToNoise
316 self.sourceSelector.signalToNoise.minimum = signalToNoiseMinimum
317 self.sourceSelector.signalToNoise.maximum = signalToNoiseMaximum
318 # The following two configs should not be necessary to be turned on for
319 # PSF-matching, and the fallback kernel source selection will fail if
320 # they are set since it does not run deblending.
321 self.fallbackSourceSelector.doIsolated = False # Do not apply isolated star selection
322 self.fallbackSourceSelector.doRequirePrimary = False # Do not apply primary flag selection
323 self.fallbackSourceSelector.doUnresolved = doUnresolved
324 self.fallbackSourceSelector.doSkySources = doSkySources
325 self.fallbackSourceSelector.doSignalToNoise = doSignalToNoise
326 self.fallbackSourceSelector.signalToNoise.minimum = signalToNoiseMinimum
327 self.fallbackSourceSelector.signalToNoise.maximum = signalToNoiseMaximum
328
329
330class AlardLuptonSubtractConfig(AlardLuptonSubtractBaseConfig, lsst.pipe.base.PipelineTaskConfig,
331 pipelineConnections=AlardLuptonSubtractConnections):
333 dtype=str,
334 default="convolveTemplate",
335 allowed={"auto": "Choose which image to convolve at runtime.",
336 "convolveScience": "Only convolve the science image.",
337 "convolveTemplate": "Only convolve the template image."},
338 doc="Choose which image to convolve at runtime, or require that a specific image is convolved."
339 )
340
341
342class AlardLuptonSubtractTask(lsst.pipe.base.PipelineTask):
343 """Compute the image difference of a science and template image using
344 the Alard & Lupton (1998) algorithm.
345 """
346 ConfigClass = AlardLuptonSubtractConfig
347 _DefaultName = "alardLuptonSubtract"
348
349 def __init__(self, **kwargs):
350 super().__init__(**kwargs)
351 self.makeSubtask("decorrelate")
352 self.makeSubtask("makeKernel")
353 self.makeSubtask("sourceSelector")
354 self.makeSubtask("fallbackSourceSelector")
355 if self.config.doScaleVariance:
356 self.makeSubtask("scaleVariance")
357
359 # Normalization is an extra, unnecessary, calculation and will result
360 # in mis-subtraction of the images if there are calibration errors.
361 self.convolutionControl.setDoNormalize(False)
362 self.convolutionControl.setDoCopyEdge(True)
363
364 def _applyExternalCalibrations(self, exposure, visitSummary):
365 """Replace calibrations (psf, and ApCorrMap) on this exposure with
366 external ones.".
367
368 Parameters
369 ----------
370 exposure : `lsst.afw.image.exposure.Exposure`
371 Input exposure to adjust calibrations.
372 visitSummary : `lsst.afw.table.ExposureCatalog`
373 Exposure catalog with external calibrations to be applied. Catalog
374 uses the detector id for the catalog id, sorted on id for fast
375 lookup.
376
377 Returns
378 -------
379 exposure : `lsst.afw.image.exposure.Exposure`
380 Exposure with adjusted calibrations.
381 """
382 detectorId = exposure.info.getDetector().getId()
383
384 row = visitSummary.find(detectorId)
385 if row is None:
386 self.log.warning("Detector id %s not found in external calibrations catalog; "
387 "Using original calibrations.", detectorId)
388 else:
389 psf = row.getPsf()
390 apCorrMap = row.getApCorrMap()
391 if psf is None:
392 self.log.warning("Detector id %s has None for psf in "
393 "external calibrations catalog; Using original psf and aperture correction.",
394 detectorId)
395 elif apCorrMap is None:
396 self.log.warning("Detector id %s has None for apCorrMap in "
397 "external calibrations catalog; Using original psf and aperture correction.",
398 detectorId)
399 else:
400 exposure.setPsf(psf)
401 exposure.info.setApCorrMap(apCorrMap)
402
403 return exposure
404
405 def runQuantum(self, butlerQC, inputRefs, outputRefs):
406 inputs = butlerQC.get(inputRefs)
407
408 try:
409 results = self.run(**inputs)
410 except lsst.pipe.base.AlgorithmError as e:
411 error = lsst.pipe.base.AnnotatedPartialOutputsError.annotate(e, self, log=self.log)
412 # No partial outputs for butler to put
413 raise error from e
414
415 butlerQC.put(results, outputRefs)
416
417 @timeMethod
418 def run(self, template, science, sources, visitSummary=None):
419 """PSF match, subtract, and decorrelate two images.
420
421 Parameters
422 ----------
423 template : `lsst.afw.image.ExposureF`
424 Template exposure, warped to match the science exposure.
425 science : `lsst.afw.image.ExposureF`
426 Science exposure to subtract from the template.
427 sources : `lsst.afw.table.SourceCatalog`
428 Identified sources on the science exposure. This catalog is used to
429 select sources in order to perform the AL PSF matching on stamp
430 images around them.
431 visitSummary : `lsst.afw.table.ExposureCatalog`, optional
432 Exposure catalog with external calibrations to be applied. Catalog
433 uses the detector id for the catalog id, sorted on id for fast
434 lookup.
435
436 Returns
437 -------
438 results : `lsst.pipe.base.Struct`
439 ``difference`` : `lsst.afw.image.ExposureF`
440 Result of subtracting template and science.
441 ``matchedTemplate`` : `lsst.afw.image.ExposureF`
442 Warped and PSF-matched template exposure.
443 ``backgroundModel`` : `lsst.afw.math.Function2D`
444 Background model that was fit while solving for the
445 PSF-matching kernel
446 ``psfMatchingKernel`` : `lsst.afw.math.Kernel`
447 Kernel used to PSF-match the convolved image.
448 ``kernelSources` : `lsst.afw.table.SourceCatalog`
449 Sources from the input catalog that were used to construct the
450 PSF-matching kernel.
451 """
452 self._prepareInputs(template, science, visitSummary=visitSummary)
453
454 convolveTemplate = self.chooseConvolutionMethod(template, science)
455
456 kernelResult = self.runMakeKernel(template, science, sources=sources,
457 convolveTemplate=convolveTemplate,
458 runSourceDetection=False)
459
460 if self.config.doSubtractBackground:
461 backgroundModel = kernelResult.backgroundModel
462 else:
463 backgroundModel = None
464 if convolveTemplate:
465 subtractResults = self.runConvolveTemplate(template, science, kernelResult.psfMatchingKernel,
466 backgroundModel=backgroundModel)
467 else:
468 subtractResults = self.runConvolveScience(template, science, kernelResult.psfMatchingKernel,
469 backgroundModel=backgroundModel)
470 subtractResults.kernelSources = kernelResult.kernelSources
471
472 metrics = computeDifferenceImageMetrics(science, subtractResults.difference, sources)
473
474 self.metadata["differenceFootprintRatioMean"] = metrics.differenceFootprintRatioMean
475 self.metadata["differenceFootprintRatioStdev"] = metrics.differenceFootprintRatioStdev
476 self.metadata["differenceFootprintSkyRatioMean"] = metrics.differenceFootprintSkyRatioMean
477 self.metadata["differenceFootprintSkyRatioStdev"] = metrics.differenceFootprintSkyRatioStdev
478 self.log.info("Mean, stdev of ratio of difference to science "
479 "pixels in star footprints: %5.4f, %5.4f",
480 self.metadata["differenceFootprintRatioMean"],
481 self.metadata["differenceFootprintRatioStdev"])
482
483 return subtractResults
484
485 def chooseConvolutionMethod(self, template, science):
486 """Determine whether the template should be convolved with the PSF
487 matching kernel.
488
489 Parameters
490 ----------
491 template : `lsst.afw.image.ExposureF`
492 Template exposure, warped to match the science exposure.
493 science : `lsst.afw.image.ExposureF`
494 Science exposure to subtract from the template.
495
496 Returns
497 -------
498 convolveTemplate : `bool`
499 Convolve the template to match the two images?
500
501 Raises
502 ------
503 RuntimeError
504 If an unsupported convolution mode is supplied.
505 """
506 if self.config.mode == "auto":
507 convolveTemplate = _shapeTest(template,
508 science,
509 fwhmExposureBuffer=self.config.makeKernel.fwhmExposureBuffer,
510 fwhmExposureGrid=self.config.makeKernel.fwhmExposureGrid)
511 if convolveTemplate:
513 self.log.info("Average template PSF size is greater, "
514 "but science PSF greater in one dimension: convolving template image.")
515 else:
516 self.log.info("Science PSF size is greater: convolving template image.")
517 else:
518 self.log.info("Template PSF size is greater: convolving science image.")
519 elif self.config.mode == "convolveTemplate":
520 self.log.info("`convolveTemplate` is set: convolving template image.")
521 convolveTemplate = True
522 elif self.config.mode == "convolveScience":
523 self.log.info("`convolveScience` is set: convolving science image.")
524 convolveTemplate = False
525 else:
526 raise RuntimeError("Cannot handle AlardLuptonSubtract mode: %s", self.config.mode)
527 return convolveTemplate
528
529 def runMakeKernel(self, template, science, sources=None, convolveTemplate=True, runSourceDetection=False):
530 """Construct the PSF-matching kernel.
531
532 Parameters
533 ----------
534 template : `lsst.afw.image.ExposureF`
535 Template exposure, warped to match the science exposure.
536 science : `lsst.afw.image.ExposureF`
537 Science exposure to subtract from the template.
538 sources : `lsst.afw.table.SourceCatalog`
539 Identified sources on the science exposure. This catalog is used to
540 select sources in order to perform the AL PSF matching on stamp
541 images around them.
542 Not used if ``runSourceDetection`` is set.
543 convolveTemplate : `bool`, optional
544 Construct the matching kernel to convolve the template?
545 runSourceDetection : `bool`, optional
546 Run a minimal version of source detection to determine kernel
547 candidates? If False, a source list to select kernel candidates
548 from must be supplied.
549
550 Returns
551 -------
552 results : `lsst.pipe.base.Struct`
553 ``backgroundModel`` : `lsst.afw.math.Function2D`
554 Background model that was fit while solving for the
555 PSF-matching kernel
556 ``psfMatchingKernel`` : `lsst.afw.math.Kernel`
557 Kernel used to PSF-match the convolved image.
558 ``kernelSources` : `lsst.afw.table.SourceCatalog`
559 Sources from the input catalog that were used to construct the
560 PSF-matching kernel.
561 """
562
563 if convolveTemplate:
564 reference = template
565 target = science
566 referenceFwhmPix = self.templatePsfSize
567 targetFwhmPix = self.sciencePsfSize
568 else:
569 reference = science
570 target = template
571 referenceFwhmPix = self.sciencePsfSize
572 targetFwhmPix = self.templatePsfSize
573 try:
574 if runSourceDetection:
575 kernelSources = self.runKernelSourceDetection(template, science)
576 else:
577 kernelSources = self._sourceSelector(template, science, sources)
578 kernelResult = self.makeKernel.run(reference, target, kernelSources,
579 preconvolved=False,
580 templateFwhmPix=referenceFwhmPix,
581 scienceFwhmPix=targetFwhmPix)
582 except (RuntimeError, lsst.pex.exceptions.Exception) as e:
583 self.log.warning("Failed to match template. Checking coverage")
584 # Raise NoWorkFound if template fraction is insufficient
585 checkTemplateIsSufficient(template[science.getBBox()], science, self.log,
586 self.config.minTemplateFractionForExpectedSuccess,
587 exceptionMessage="Template coverage lower than expected to succeed."
588 f" Failure is tolerable: {e}")
589 # checkTemplateIsSufficient did not raise NoWorkFound, so raise original exception
590 raise e
591
592 return lsst.pipe.base.Struct(backgroundModel=kernelResult.backgroundModel,
593 psfMatchingKernel=kernelResult.psfMatchingKernel,
594 kernelSources=kernelSources)
595
596 def runKernelSourceDetection(self, template, science):
597 """Run detection on the science image and use the template mask plane
598 to reject candidate sources.
599
600 Parameters
601 ----------
602 template : `lsst.afw.image.ExposureF`
603 Template exposure, warped to match the science exposure.
604 science : `lsst.afw.image.ExposureF`
605 Science exposure to subtract from the template.
606
607 Returns
608 -------
609 kernelSources : `lsst.afw.table.SourceCatalog`
610 Sources from the input catalog to use to construct the
611 PSF-matching kernel.
612 """
613 kernelSize = self.makeKernel.makeKernelBasisList(
614 self.templatePsfSize, self.sciencePsfSize)[0].getWidth()
615 sigmaToFwhm = 2*np.log(2*np.sqrt(2))
616 candidateList = self.makeKernel.makeCandidateList(template, science, kernelSize,
617 candidateList=None,
618 sigma=self.sciencePsfSize/sigmaToFwhm)
619 sources = self.makeKernel.selectKernelSources(template, science,
620 candidateList=candidateList,
621 preconvolved=False,
622 templateFwhmPix=self.templatePsfSize,
623 scienceFwhmPix=self.sciencePsfSize)
624
625 # return sources
626 return self._sourceSelector(template, science, sources, fallback=True)
627
628 def runConvolveTemplate(self, template, science, psfMatchingKernel, backgroundModel=None):
629 """Convolve the template image with a PSF-matching kernel and subtract
630 from the science image.
631
632 Parameters
633 ----------
634 template : `lsst.afw.image.ExposureF`
635 Template exposure, warped to match the science exposure.
636 science : `lsst.afw.image.ExposureF`
637 Science exposure to subtract from the template.
638 psfMatchingKernel : `lsst.afw.math.Kernel`
639 Kernel to be used to PSF-match the science image to the template.
640 backgroundModel : `lsst.afw.math.Function2D`, optional
641 Background model that was fit while solving for the PSF-matching
642 kernel.
643
644 Returns
645 -------
646 results : `lsst.pipe.base.Struct`
647
648 ``difference`` : `lsst.afw.image.ExposureF`
649 Result of subtracting template and science.
650 ``matchedTemplate`` : `lsst.afw.image.ExposureF`
651 Warped and PSF-matched template exposure.
652 ``backgroundModel`` : `lsst.afw.math.Function2D`
653 Background model that was fit while solving for the PSF-matching kernel
654 ``psfMatchingKernel`` : `lsst.afw.math.Kernel`
655 Kernel used to PSF-match the template to the science image.
656 """
657 self.metadata["convolvedExposure"] = "Template"
658
659 matchedTemplate = self._convolveExposure(template, psfMatchingKernel,
661 bbox=science.getBBox(),
662 psf=science.psf,
663 photoCalib=science.photoCalib)
664
665 difference = _subtractImages(science, matchedTemplate, backgroundModel=backgroundModel)
666 correctedExposure = self.finalize(template, science, difference,
667 psfMatchingKernel,
668 templateMatched=True)
669
670 return lsst.pipe.base.Struct(difference=correctedExposure,
671 matchedTemplate=matchedTemplate,
672 matchedScience=science,
673 backgroundModel=backgroundModel,
674 psfMatchingKernel=psfMatchingKernel)
675
676 def runConvolveScience(self, template, science, psfMatchingKernel, backgroundModel=None):
677 """Convolve the science image with a PSF-matching kernel and subtract
678 the template image.
679
680 Parameters
681 ----------
682 template : `lsst.afw.image.ExposureF`
683 Template exposure, warped to match the science exposure.
684 science : `lsst.afw.image.ExposureF`
685 Science exposure to subtract from the template.
686 psfMatchingKernel : `lsst.afw.math.Kernel`
687 Kernel to be used to PSF-match the science image to the template.
688 backgroundModel : `lsst.afw.math.Function2D`, optional
689 Background model that was fit while solving for the PSF-matching
690 kernel.
691
692 Returns
693 -------
694 results : `lsst.pipe.base.Struct`
695
696 ``difference`` : `lsst.afw.image.ExposureF`
697 Result of subtracting template and science.
698 ``matchedTemplate`` : `lsst.afw.image.ExposureF`
699 Warped template exposure. Note that in this case, the template
700 is not PSF-matched to the science image.
701 ``backgroundModel`` : `lsst.afw.math.Function2D`
702 Background model that was fit while solving for the PSF-matching kernel
703 ``psfMatchingKernel`` : `lsst.afw.math.Kernel`
704 Kernel used to PSF-match the science image to the template.
705 """
706 self.metadata["convolvedExposure"] = "Science"
707 bbox = science.getBBox()
708
709 kernelImage = lsst.afw.image.ImageD(psfMatchingKernel.getDimensions())
710 norm = psfMatchingKernel.computeImage(kernelImage, doNormalize=False)
711
712 matchedScience = self._convolveExposure(science, psfMatchingKernel,
714 psf=template.psf)
715
716 # Place back on native photometric scale
717 matchedScience.maskedImage /= norm
718 matchedTemplate = template.clone()[bbox]
719 matchedTemplate.maskedImage /= norm
720 matchedTemplate.setPhotoCalib(science.photoCalib)
721
722 if backgroundModel is not None:
723 modelParams = backgroundModel.getParameters()
724 # We must invert the background model if the matching kernel is solved for the science image.
725 backgroundModel.setParameters([-p for p in modelParams])
726
727 difference = _subtractImages(matchedScience, matchedTemplate, backgroundModel=backgroundModel)
728
729 correctedExposure = self.finalize(template, science, difference,
730 psfMatchingKernel,
731 templateMatched=False)
732
733 return lsst.pipe.base.Struct(difference=correctedExposure,
734 matchedTemplate=matchedTemplate,
735 matchedScience=matchedScience,
736 backgroundModel=backgroundModel,
737 psfMatchingKernel=psfMatchingKernel)
738
739 def finalize(self, template, science, difference, kernel,
740 templateMatched=True,
741 preConvMode=False,
742 preConvKernel=None,
743 spatiallyVarying=False):
744 """Decorrelate the difference image to undo the noise correlations
745 caused by convolution.
746
747 Parameters
748 ----------
749 template : `lsst.afw.image.ExposureF`
750 Template exposure, warped to match the science exposure.
751 science : `lsst.afw.image.ExposureF`
752 Science exposure to subtract from the template.
753 difference : `lsst.afw.image.ExposureF`
754 Result of subtracting template and science.
755 kernel : `lsst.afw.math.Kernel`
756 An (optionally spatially-varying) PSF matching kernel
757 templateMatched : `bool`, optional
758 Was the template PSF-matched to the science image?
759 preConvMode : `bool`, optional
760 Was the science image preconvolved with its own PSF
761 before PSF matching the template?
762 preConvKernel : `lsst.afw.detection.Psf`, optional
763 If not `None`, then the science image was pre-convolved with
764 (the reflection of) this kernel. Must be normalized to sum to 1.
765 spatiallyVarying : `bool`, optional
766 Compute the decorrelation kernel spatially varying across the image?
767
768 Returns
769 -------
770 correctedExposure : `lsst.afw.image.ExposureF`
771 The decorrelated image difference.
772 """
773 if self.config.doDecorrelation:
774 self.log.info("Decorrelating image difference.")
775 # We have cleared the template mask plane, so copy the mask plane of
776 # the image difference so that we can calculate correct statistics
777 # during decorrelation
778 correctedExposure = self.decorrelate.run(science, template[science.getBBox()], difference, kernel,
779 templateMatched=templateMatched,
780 preConvMode=preConvMode,
781 preConvKernel=preConvKernel,
782 spatiallyVarying=spatiallyVarying).correctedExposure
783 else:
784 self.log.info("NOT decorrelating image difference.")
785 correctedExposure = difference
786 return correctedExposure
787
788 def _calculateMagLim(self, exposure, nsigma=5.0, fallbackPsfSize=None):
789 """Calculate an exposure's limiting magnitude.
790
791 This method uses the photometric zeropoint together with the
792 PSF size from the average position of the exposure.
793
794 Parameters
795 ----------
796 exposure : `lsst.afw.image.Exposure`
797 The target exposure to calculate the limiting magnitude for.
798 nsigma : `float`, optional
799 The detection threshold in sigma.
800 fallbackPsfSize : `float`, optional
801 PSF FWHM to use in the event the exposure PSF cannot be retrieved.
802
803 Returns
804 -------
805 maglim : `astropy.units.Quantity`
806 The limiting magnitude of the exposure, or np.nan.
807 """
808 if exposure.photoCalib is None:
809 return np.nan
810 # Set maglim to nan upfront in case on an unexpected RuntimeError
811 maglim = np.nan
812 try:
813 psf = exposure.getPsf()
814 psf_shape = psf.computeShape(psf.getAveragePosition())
816 afwDetection.InvalidPsfError,
818 if fallbackPsfSize is not None:
819 self.log.info("Unable to evaluate PSF, using fallback FWHM %f", fallbackPsfSize)
820 psf_area = np.pi*(fallbackPsfSize/2)**2
821 zeropoint = exposure.photoCalib.instFluxToMagnitude(1)
822 maglim = zeropoint - 2.5*np.log10(nsigma*np.sqrt(psf_area))
823 else:
824 self.log.info("Unable to evaluate PSF, setting maglim to nan")
825 maglim = np.nan
826 else:
827 # Get a more accurate area than `psf_shape.getArea()` via moments
828 psf_area = np.pi*np.sqrt(psf_shape.getIxx()*psf_shape.getIyy())
829 zeropoint = exposure.photoCalib.instFluxToMagnitude(1)
830 maglim = zeropoint - 2.5*np.log10(nsigma*np.sqrt(psf_area))
831 finally:
832 return maglim
833
834 @staticmethod
835 def _validateExposures(template, science):
836 """Check that the WCS of the two Exposures match, the template bbox
837 contains the science bbox, and that the bands match.
838
839 Parameters
840 ----------
841 template : `lsst.afw.image.ExposureF`
842 Template exposure, warped to match the science exposure.
843 science : `lsst.afw.image.ExposureF`
844 Science exposure to subtract from the template.
845
846 Raises
847 ------
848 AssertionError
849 Raised if the WCS of the template is not equal to the science WCS,
850 if the science image is not fully contained in the template
851 bounding box, or if the bands do not match.
852 """
853 assert template.wcs == science.wcs, \
854 "Template and science exposure WCS are not identical."
855 templateBBox = template.getBBox()
856 scienceBBox = science.getBBox()
857 assert science.filter.bandLabel == template.filter.bandLabel, \
858 "Science and template exposures have different bands: %s, %s" % \
859 (science.filter, template.filter)
860
861 assert templateBBox.contains(scienceBBox), \
862 "Template bbox does not contain all of the science image."
863
864 def _convolveExposure(self, exposure, kernel, convolutionControl,
865 bbox=None,
866 psf=None,
867 photoCalib=None,
868 interpolateBadMaskPlanes=False,
869 ):
870 """Convolve an exposure with the given kernel.
871
872 Parameters
873 ----------
874 exposure : `lsst.afw.Exposure`
875 exposure to convolve.
876 kernel : `lsst.afw.math.LinearCombinationKernel`
877 PSF matching kernel computed in the ``makeKernel`` subtask.
878 convolutionControl : `lsst.afw.math.ConvolutionControl`
879 Configuration for convolve algorithm.
880 bbox : `lsst.geom.Box2I`, optional
881 Bounding box to trim the convolved exposure to.
882 psf : `lsst.afw.detection.Psf`, optional
883 Point spread function (PSF) to set for the convolved exposure.
884 photoCalib : `lsst.afw.image.PhotoCalib`, optional
885 Photometric calibration of the convolved exposure.
886 interpolateBadMaskPlanes : `bool`, optional
887 If set, interpolate over mask planes specified in
888 ``config.badMaskPlanes`` before convolving the image.
889
890 Returns
891 -------
892 convolvedExp : `lsst.afw.Exposure`
893 The convolved image.
894 """
895 convolvedExposure = exposure.clone()
896 if psf is not None:
897 convolvedExposure.setPsf(psf)
898 if photoCalib is not None:
899 convolvedExposure.setPhotoCalib(photoCalib)
900 if interpolateBadMaskPlanes and self.config.badMaskPlanes is not None:
901 nInterp = _interpolateImage(convolvedExposure.maskedImage,
902 self.config.badMaskPlanes)
903 self.metadata["nInterpolated"] = nInterp
904 convolvedImage = lsst.afw.image.MaskedImageF(convolvedExposure.getBBox())
905 lsst.afw.math.convolve(convolvedImage, convolvedExposure.maskedImage, kernel, convolutionControl)
906 convolvedExposure.setMaskedImage(convolvedImage)
907 if bbox is None:
908 return convolvedExposure
909 else:
910 return convolvedExposure[bbox]
911
912 def _sourceSelector(self, template, science, sources, fallback=False, preconvolved=False):
913 """Select sources from a catalog that meet the selection criteria.
914 The selection criteria include any configured parameters of the
915 `sourceSelector` subtask, as well as checking the science and template
916 mask planes.
917
918 Parameters
919 ----------
920 template : `lsst.afw.image.ExposureF`
921 Template exposure, warped to match the science exposure.
922 science : `lsst.afw.image.ExposureF`
923 Science exposure to subtract from the template.
924 sources : `lsst.afw.table.SourceCatalog`
925 Input source catalog to select sources from.
926 fallback : `bool`, optional
927 Switch indicating the source selector is being called after
928 running the fallback source detection subtask, which does not run a
929 full set of measurement plugins and can't use the same settings for
930 the source selector.
931 preconvolved : `bool`, optional
932 If set, exclude a wider buffer around the edge of the image to
933 account for an extra convolution.
934
935 Returns
936 -------
937 kernelSources : `lsst.afw.table.SourceCatalog`
938 The input source catalog, with flagged and low signal-to-noise
939 sources removed and footprints added.
940
941 Raises
942 ------
943 InsufficientKernelSourcesError
944 An AlgorithmError that is raised if there are not enough PSF
945 candidates to construct the PSF matching kernel.
946 """
947 if fallback:
948 selected = self.fallbackSourceSelector.selectSources(sources).selected
949 else:
950 selected = self.sourceSelector.selectSources(sources).selected
951 sciencePsfSize = self.sciencePsfSize*np.sqrt(2) if preconvolved else self.sciencePsfSize
952 kSize = self.makeKernel.makeKernelBasisList(self.templatePsfSize, sciencePsfSize)[0].getWidth()
953 selectSources = sources[selected].copy(deep=True)
954 # Set the footprints, to be used in `makeKernel` and `checkMask`.
955 kernelSources = setSourceFootprints(selectSources, kernelSize=kSize)
956 bbox = science.getBBox()
957 if preconvolved:
958 bbox.grow(-kSize)
959 if self.config.restrictKernelEdgeSources:
960 bbox.grow(-kSize)
961 # Remove sources that land on masked pixels
962 scienceSelected = checkMask(science.mask[bbox], kernelSources, self.config.excludeMaskPlanes)
963 templateSelected = checkMask(template.mask[bbox], kernelSources, self.config.excludeMaskPlanes)
964 maskSelected = scienceSelected & templateSelected
965 kernelSources = kernelSources[maskSelected].copy(deep=True)
966 # Trim kernelSources if they exceed ``maxKernelSources``.
967 # Keep the highest signal-to-noise sources of those selected.
968 if (len(kernelSources) > self.config.maxKernelSources) & (self.config.maxKernelSources > 0):
969 signalToNoise = kernelSources.getPsfInstFlux()/kernelSources.getPsfInstFluxErr()
970 indices = np.argsort(signalToNoise)
971 indices = indices[-self.config.maxKernelSources:]
972 selected = np.zeros(len(kernelSources), dtype=bool)
973 selected[indices] = True
974 kernelSources = kernelSources[selected].copy(deep=True)
975
976 self.log.info("%i/%i=%.1f%% of sources selected for PSF matching from the input catalog",
977 len(kernelSources), len(sources), 100*len(kernelSources)/len(sources))
978 if len(kernelSources) < self.config.minKernelSources:
979 self.log.error("Too few sources to calculate the PSF matching kernel: "
980 "%i selected but %i needed for the calculation.",
981 len(kernelSources), self.config.minKernelSources)
982 if self.config.allowKernelSourceDetection and not fallback:
983 # The fallback source detection pipeline calls this method, so
984 # allowing source detection in that case would create an endless
985 # loop
986 kernelSources = self.runKernelSourceDetection(template, science)
987 else:
988 raise InsufficientKernelSourcesError(nSources=len(kernelSources),
989 nRequired=self.config.minKernelSources)
990
991 self.metadata["nPsfSources"] = len(kernelSources)
992
993 return kernelSources
994
995 def _prepareInputs(self, template, science, visitSummary=None):
996 """Perform preparatory calculations common to all Alard&Lupton Tasks.
997
998 Parameters
999 ----------
1000 template : `lsst.afw.image.ExposureF`
1001 Template exposure, warped to match the science exposure. The
1002 variance plane of the template image is modified in place.
1003 science : `lsst.afw.image.ExposureF`
1004 Science exposure to subtract from the template. The variance plane
1005 of the science image is modified in place.
1006 visitSummary : `lsst.afw.table.ExposureCatalog`, optional
1007 Exposure catalog with external calibrations to be applied. Catalog
1008 uses the detector id for the catalog id, sorted on id for fast
1009 lookup.
1010 """
1011 self._validateExposures(template, science)
1012 if visitSummary is not None:
1013 self._applyExternalCalibrations(science, visitSummary=visitSummary)
1014 templateCoverageFraction = checkTemplateIsSufficient(
1015 template[science.getBBox()], science, self.log,
1016 requiredTemplateFraction=self.config.requiredTemplateFraction,
1017 exceptionMessage="Not attempting subtraction. To force subtraction,"
1018 " set config requiredTemplateFraction=0"
1019 )
1020 self.metadata["templateCoveragePercent"] = 100*templateCoverageFraction
1021
1022 if self.config.doScaleVariance:
1023 # Scale the variance of the template and science images before
1024 # convolution, subtraction, or decorrelation so that they have the
1025 # correct ratio.
1026 templateVarFactor = self.scaleVariance.run(template.maskedImage)
1027 sciVarFactor = self.scaleVariance.run(science.maskedImage)
1028 self.log.info("Template variance scaling factor: %.2f", templateVarFactor)
1029 self.metadata["scaleTemplateVarianceFactor"] = templateVarFactor
1030 self.log.info("Science variance scaling factor: %.2f", sciVarFactor)
1031 self.metadata["scaleScienceVarianceFactor"] = sciVarFactor
1032
1033 # Erase existing detection mask planes.
1034 # We don't want the detection mask from the science image
1035 self.updateMasks(template, science)
1036
1037 # Calling getPsfFwhm on template.psf fails on some rare occasions when
1038 # the template has no input exposures at the average position of the
1039 # stars. So we try getPsfFwhm first on template, and if that fails we
1040 # evaluate the PSF on a grid specified by fwhmExposure* fields.
1041 # To keep consistent definitions for PSF size on the template and
1042 # science images, we use the same method for both.
1043 # In the try block below, we catch two exceptions:
1044 # 1. InvalidParameterError, in case the point where we are evaluating
1045 # the PSF lands in a gap in the template.
1046 # 2. RangeError, in case the template coverage is so poor that we end
1047 # up near a region with no data.
1048 try:
1049 self.templatePsfSize = getPsfFwhm(template.psf)
1050 self.sciencePsfSize = getPsfFwhm(science.psf)
1052 # Catch a broad range of exceptions, since some are C++ only
1053 # Catching:
1054 # - lsst::geom::SingularTransformException
1055 # - lsst.pex.exceptions.InvalidParameterError
1056 # - lsst.pex.exceptions.RangeError
1057 self.log.info("Unable to evaluate PSF at the average position. "
1058 "Evaluting PSF on a grid of points."
1059 )
1060 self.templatePsfSize = evaluateMeanPsfFwhm(
1061 template,
1062 fwhmExposureBuffer=self.config.makeKernel.fwhmExposureBuffer,
1063 fwhmExposureGrid=self.config.makeKernel.fwhmExposureGrid
1064 )
1065 self.sciencePsfSize = evaluateMeanPsfFwhm(
1066 science,
1067 fwhmExposureBuffer=self.config.makeKernel.fwhmExposureBuffer,
1068 fwhmExposureGrid=self.config.makeKernel.fwhmExposureGrid
1069 )
1070 self.log.info("Science PSF FWHM: %f pixels", self.sciencePsfSize)
1071 self.log.info("Template PSF FWHM: %f pixels", self.templatePsfSize)
1072 self.metadata["sciencePsfSize"] = self.sciencePsfSize
1073 self.metadata["templatePsfSize"] = self.templatePsfSize
1074
1075 # Calculate estimated image depths, i.e., limiting magnitudes
1076 maglim_science = self._calculateMagLim(science, fallbackPsfSize=self.sciencePsfSize)
1077 if np.isnan(maglim_science):
1078 self.log.warning("Limiting magnitude of the science image is NaN!")
1079 fluxlim_science = (maglim_science*u.ABmag).to_value(u.nJy)
1080 maglim_template = self._calculateMagLim(template, fallbackPsfSize=self.templatePsfSize)
1081 if np.isnan(maglim_template):
1082 self.log.info("Cannot evaluate template limiting mag; adopting science limiting mag for diffim")
1083 maglim_diffim = maglim_science
1084 else:
1085 fluxlim_template = (maglim_template*u.ABmag).to_value(u.nJy)
1086 maglim_diffim = (np.sqrt(fluxlim_science**2 + fluxlim_template**2)*u.nJy).to(u.ABmag).value
1087 self.metadata["scienceLimitingMagnitude"] = maglim_science
1088 self.metadata["templateLimitingMagnitude"] = maglim_template
1089 self.metadata["diffimLimitingMagnitude"] = maglim_diffim
1090
1091 def updateMasks(self, template, science):
1092 """Update the science and template mask planes before differencing.
1093
1094 Parameters
1095 ----------
1096 template : `lsst.afw.image.Exposure`
1097 Template exposure, warped to match the science exposure.
1098 The template mask planes will be erased, except for a few specified
1099 in the task config.
1100 science : `lsst.afw.image.Exposure`
1101 Science exposure to subtract from the template.
1102 The DETECTED and DETECTED_NEGATIVE mask planes of the science image
1103 will be erased.
1104 """
1105 self._clearMask(science.mask, clearMaskPlanes=["DETECTED", "DETECTED_NEGATIVE"])
1106
1107 # We will clear ALL template mask planes, except for those specified
1108 # via the `preserveTemplateMask` config. Mask planes specified via
1109 # the `renameTemplateMask` config will be copied to new planes with
1110 # "_TEMPLATE" appended to their names, and the original mask plane will
1111 # be cleared.
1112 clearMaskPlanes = [mp for mp in template.mask.getMaskPlaneDict().keys()
1113 if mp not in self.config.preserveTemplateMask]
1114 renameMaskPlanes = [mp for mp in self.config.renameTemplateMask
1115 if mp in template.mask.getMaskPlaneDict().keys()]
1116
1117 # propagate the mask plane related to Fake source injection
1118 # NOTE: the fake source injection sets FAKE plane, but it should be INJECTED
1119 # NOTE: This can be removed in DM-40796
1120 if "FAKE" in science.mask.getMaskPlaneDict().keys():
1121 self.log.info("Adding injected mask plane to science image")
1122 self._renameMaskPlanes(science.mask, "FAKE", "INJECTED")
1123 if "FAKE" in template.mask.getMaskPlaneDict().keys():
1124 self.log.info("Adding injected mask plane to template image")
1125 self._renameMaskPlanes(template.mask, "FAKE", "INJECTED_TEMPLATE")
1126 if "INJECTED" in renameMaskPlanes:
1127 renameMaskPlanes.remove("INJECTED")
1128 if "INJECTED_TEMPLATE" in clearMaskPlanes:
1129 clearMaskPlanes.remove("INJECTED_TEMPLATE")
1130
1131 for maskPlane in renameMaskPlanes:
1132 self._renameMaskPlanes(template.mask, maskPlane, maskPlane + "_TEMPLATE")
1133 self._clearMask(template.mask, clearMaskPlanes=clearMaskPlanes)
1134
1135 @staticmethod
1136 def _renameMaskPlanes(mask, maskPlane, newMaskPlane):
1137 """Rename a mask plane by adding the new name and copying the data.
1138
1139 Parameters
1140 ----------
1141 mask : `lsst.afw.image.Mask`
1142 The mask image to update in place.
1143 maskPlane : `str`
1144 The name of the existing mask plane to copy.
1145 newMaskPlane : `str`
1146 The new name of the mask plane that will be added.
1147 If the mask plane already exists, it will be updated in place.
1148 """
1149 mask.addMaskPlane(newMaskPlane)
1150 originBitMask = mask.getPlaneBitMask(maskPlane)
1151 destinationBitMask = mask.getPlaneBitMask(newMaskPlane)
1152 mask.array |= ((mask.array & originBitMask) > 0)*destinationBitMask
1153
1154 def _clearMask(self, mask, clearMaskPlanes=None):
1155 """Clear the mask plane of an exposure.
1156
1157 Parameters
1158 ----------
1159 mask : `lsst.afw.image.Mask`
1160 The mask plane to erase, which will be modified in place.
1161 clearMaskPlanes : `list` of `str`, optional
1162 Erase the specified mask planes.
1163 If not supplied, the entire mask will be erased.
1164 """
1165 if clearMaskPlanes is None:
1166 clearMaskPlanes = list(mask.getMaskPlaneDict().keys())
1167
1168 bitMaskToClear = mask.getPlaneBitMask(clearMaskPlanes)
1169 mask &= ~bitMaskToClear
1170
1171
1173 SubtractScoreOutputConnections):
1174 pass
1175
1176
1178 pipelineConnections=AlardLuptonPreconvolveSubtractConnections):
1179 pass
1180
1181
1183 """Subtract a template from a science image, convolving the science image
1184 before computing the kernel, and also convolving the template before
1185 subtraction.
1186 """
1187 ConfigClass = AlardLuptonPreconvolveSubtractConfig
1188 _DefaultName = "alardLuptonPreconvolveSubtract"
1189
1190 def run(self, template, science, sources, visitSummary=None):
1191 """Preconvolve the science image with its own PSF,
1192 convolve the template image with a PSF-matching kernel and subtract
1193 from the preconvolved science image.
1194
1195 Parameters
1196 ----------
1197 template : `lsst.afw.image.ExposureF`
1198 The template image, which has previously been warped to the science
1199 image. The template bbox will be padded by a few pixels compared to
1200 the science bbox.
1201 science : `lsst.afw.image.ExposureF`
1202 The science exposure.
1203 sources : `lsst.afw.table.SourceCatalog`
1204 Identified sources on the science exposure. This catalog is used to
1205 select sources in order to perform the AL PSF matching on stamp
1206 images around them.
1207 visitSummary : `lsst.afw.table.ExposureCatalog`, optional
1208 Exposure catalog with complete external calibrations. Catalog uses
1209 the detector id for the catalog id, sorted on id for fast lookup.
1210
1211 Returns
1212 -------
1213 results : `lsst.pipe.base.Struct`
1214 ``scoreExposure`` : `lsst.afw.image.ExposureF`
1215 Result of subtracting the convolved template and science
1216 images. Attached PSF is that of the original science image.
1217 ``matchedTemplate`` : `lsst.afw.image.ExposureF`
1218 Warped and PSF-matched template exposure. Attached PSF is that
1219 of the original science image.
1220 ``matchedScience`` : `lsst.afw.image.ExposureF`
1221 The science exposure after convolving with its own PSF.
1222 Attached PSF is that of the original science image.
1223 ``backgroundModel`` : `lsst.afw.math.Function2D`
1224 Background model that was fit while solving for the
1225 PSF-matching kernel
1226 ``psfMatchingKernel`` : `lsst.afw.math.Kernel`
1227 Final kernel used to PSF-match the template to the science
1228 image.
1229 """
1230 self._prepareInputs(template, science, visitSummary=visitSummary)
1231
1232 # TODO: DM-37212 we need to mirror the kernel in order to get correct cross correlation
1233 scienceKernel = science.psf.getKernel()
1234 matchedScience = self._convolveExposure(science, scienceKernel, self.convolutionControl,
1235 interpolateBadMaskPlanes=True)
1236 self.metadata["convolvedExposure"] = "Preconvolution"
1237 try:
1238 kernelSources = self._sourceSelector(template, matchedScience, sources, preconvolved=True)
1239 subtractResults = self.runPreconvolve(template, science, matchedScience,
1240 kernelSources, scienceKernel)
1241
1242 except (RuntimeError, lsst.pex.exceptions.Exception) as e:
1243 self.log.warning("Failed to match template. Checking coverage")
1244 # Raise NoWorkFound if template fraction is insufficient
1245 checkTemplateIsSufficient(template[science.getBBox()], science, self.log,
1246 self.config.minTemplateFractionForExpectedSuccess,
1247 exceptionMessage="Template coverage lower than expected to succeed."
1248 f" Failure is tolerable: {e}")
1249 # checkTemplateIsSufficient did not raise NoWorkFound, so raise original exception
1250 raise e
1251
1252 return subtractResults
1253
1254 def runPreconvolve(self, template, science, matchedScience, kernelSources, preConvKernel):
1255 """Convolve the science image with its own PSF, then convolve the
1256 template with a matching kernel and subtract to form the Score
1257 exposure.
1258
1259 Parameters
1260 ----------
1261 template : `lsst.afw.image.ExposureF`
1262 Template exposure, warped to match the science exposure.
1263 science : `lsst.afw.image.ExposureF`
1264 Science exposure to subtract from the template.
1265 matchedScience : `lsst.afw.image.ExposureF`
1266 The science exposure, convolved with the reflection of its own PSF.
1267 kernelSources : `lsst.afw.table.SourceCatalog`
1268 Identified sources on the science exposure. This catalog is used to
1269 select sources in order to perform the AL PSF matching on stamp
1270 images around them.
1271 preConvKernel : `lsst.afw.math.Kernel`
1272 The reflection of the kernel that was used to preconvolve the
1273 `science` exposure. Must be normalized to sum to 1.
1274
1275 Returns
1276 -------
1277 results : `lsst.pipe.base.Struct`
1278
1279 ``scoreExposure`` : `lsst.afw.image.ExposureF`
1280 Result of subtracting the convolved template and science
1281 images. Attached PSF is that of the original science image.
1282 ``matchedTemplate`` : `lsst.afw.image.ExposureF`
1283 Warped and PSF-matched template exposure. Attached PSF is that
1284 of the original science image.
1285 ``matchedScience`` : `lsst.afw.image.ExposureF`
1286 The science exposure after convolving with its own PSF.
1287 Attached PSF is that of the original science image.
1288 ``backgroundModel`` : `lsst.afw.math.Function2D`
1289 Background model that was fit while solving for the
1290 PSF-matching kernel
1291 ``psfMatchingKernel`` : `lsst.afw.math.Kernel`
1292 Final kernel used to PSF-match the template to the science
1293 image.
1294 """
1295 bbox = science.getBBox()
1296 innerBBox = preConvKernel.shrinkBBox(bbox)
1297
1298 kernelResult = self.makeKernel.run(template[innerBBox], matchedScience[innerBBox], kernelSources,
1299 preconvolved=True,
1300 templateFwhmPix=self.templatePsfSize,
1301 scienceFwhmPix=self.sciencePsfSize)
1302
1303 matchedTemplate = self._convolveExposure(template, kernelResult.psfMatchingKernel,
1304 self.convolutionControl,
1305 bbox=bbox,
1306 psf=science.psf,
1307 interpolateBadMaskPlanes=True,
1308 photoCalib=science.photoCalib)
1309 score = _subtractImages(matchedScience, matchedTemplate,
1310 backgroundModel=(kernelResult.backgroundModel
1311 if self.config.doSubtractBackground else None))
1312 correctedScore = self.finalize(template[bbox], science, score,
1313 kernelResult.psfMatchingKernel,
1314 templateMatched=True, preConvMode=True,
1315 preConvKernel=preConvKernel)
1316
1317 return lsst.pipe.base.Struct(scoreExposure=correctedScore,
1318 matchedTemplate=matchedTemplate,
1319 matchedScience=matchedScience,
1320 backgroundModel=kernelResult.backgroundModel,
1321 psfMatchingKernel=kernelResult.psfMatchingKernel,
1322 kernelSources=kernelSources)
1323
1324
1325def checkTemplateIsSufficient(templateExposure, scienceExposure, logger, requiredTemplateFraction=0.,
1326 exceptionMessage=""):
1327 """Raise NoWorkFound if template coverage < requiredTemplateFraction
1328
1329 Parameters
1330 ----------
1331 templateExposure : `lsst.afw.image.ExposureF`
1332 The template exposure to check
1333 logger : `logging.Logger`
1334 Logger for printing output.
1335 requiredTemplateFraction : `float`, optional
1336 Fraction of pixels of the science image required to have coverage
1337 in the template.
1338 exceptionMessage : `str`, optional
1339 Message to include in the exception raised if the template coverage
1340 is insufficient.
1341
1342 Returns
1343 -------
1344 templateCoverageFraction: `float`
1345 Fraction of pixels in the template with data.
1346
1347 Raises
1348 ------
1349 lsst.pipe.base.NoWorkFound
1350 Raised if fraction of good pixels, defined as not having NO_DATA
1351 set, is less than the requiredTemplateFraction
1352 """
1353 # Count the number of pixels with the NO_DATA mask bit set
1354 # counting NaN pixels is insufficient because pixels without data are often intepolated over)
1355 noTemplate = templateExposure.mask.array & templateExposure.mask.getPlaneBitMask('NO_DATA')
1356 # Also need to account for missing data in the science image,
1357 # because template coverage there doesn't help
1358 noScience = scienceExposure.mask.array & scienceExposure.mask.getPlaneBitMask('NO_DATA')
1359 pixNoData = np.count_nonzero(noTemplate | noScience)
1360 pixGood = templateExposure.getBBox().getArea() - pixNoData
1361 templateCoverageFraction = pixGood/templateExposure.getBBox().getArea()
1362 logger.info("template has %d good pixels (%.1f%%)", pixGood, 100*templateCoverageFraction)
1363
1364 if templateCoverageFraction < requiredTemplateFraction:
1365 message = ("Insufficient Template Coverage. (%.1f%% < %.1f%%)" % (
1366 100*templateCoverageFraction,
1367 100*requiredTemplateFraction))
1368 raise lsst.pipe.base.NoWorkFound(message + " " + exceptionMessage)
1369 return templateCoverageFraction
1370
1371
1372def _subtractImages(science, template, backgroundModel=None):
1373 """Subtract template from science, propagating relevant metadata.
1374
1375 Parameters
1376 ----------
1377 science : `lsst.afw.Exposure`
1378 The input science image.
1379 template : `lsst.afw.Exposure`
1380 The template to subtract from the science image.
1381 backgroundModel : `lsst.afw.MaskedImage`, optional
1382 Differential background model
1383
1384 Returns
1385 -------
1386 difference : `lsst.afw.Exposure`
1387 The subtracted image.
1388 """
1389 difference = science.clone()
1390 if backgroundModel is not None:
1391 difference.maskedImage -= backgroundModel
1392 difference.maskedImage -= template.maskedImage
1393 return difference
1394
1395
1396def _shapeTest(exp1, exp2, fwhmExposureBuffer, fwhmExposureGrid):
1397 """Determine that the PSF of ``exp1`` is not wider than that of ``exp2``.
1398
1399 Parameters
1400 ----------
1401 exp1 : `~lsst.afw.image.Exposure`
1402 Exposure with the reference point spread function (PSF) to evaluate.
1403 exp2 : `~lsst.afw.image.Exposure`
1404 Exposure with a candidate point spread function (PSF) to evaluate.
1405 fwhmExposureBuffer : `float`
1406 Fractional buffer margin to be left out of all sides of the image
1407 during the construction of the grid to compute mean PSF FWHM in an
1408 exposure, if the PSF is not available at its average position.
1409 fwhmExposureGrid : `int`
1410 Grid size to compute the mean FWHM in an exposure, if the PSF is not
1411 available at its average position.
1412 Returns
1413 -------
1414 result : `bool`
1415 True if ``exp1`` has a PSF that is not wider than that of ``exp2`` in
1416 either dimension.
1417 """
1418 try:
1419 shape1 = getPsfFwhm(exp1.psf, average=False)
1420 shape2 = getPsfFwhm(exp2.psf, average=False)
1422 shape1 = evaluateMeanPsfFwhm(exp1,
1423 fwhmExposureBuffer=fwhmExposureBuffer,
1424 fwhmExposureGrid=fwhmExposureGrid
1425 )
1426 shape2 = evaluateMeanPsfFwhm(exp2,
1427 fwhmExposureBuffer=fwhmExposureBuffer,
1428 fwhmExposureGrid=fwhmExposureGrid
1429 )
1430 return shape1 <= shape2
1431
1432 # Results from getPsfFwhm is a tuple of two values, one for each dimension.
1433 xTest = shape1[0] <= shape2[0]
1434 yTest = shape1[1] <= shape2[1]
1435 return xTest | yTest
1436
1437
1438class SimplifiedSubtractConfig(AlardLuptonSubtractBaseConfig, lsst.pipe.base.PipelineTaskConfig,
1439 pipelineConnections=SimplifiedSubtractConnections):
1441 dtype=str,
1442 default="convolveTemplate",
1443 allowed={"auto": "Choose which image to convolve at runtime.",
1444 "convolveScience": "Only convolve the science image.",
1445 "convolveTemplate": "Only convolve the template image."},
1446 doc="Choose which image to convolve at runtime, or require that a specific image is convolved."
1447 )
1448 useExistingKernel = lsst.pex.config.Field(
1449 dtype=bool,
1450 default=True,
1451 doc="Use a pre-existing PSF matching kernel?"
1452 "If False, source detection and measurement will be run."
1453 )
1454
1455
1457 """Compute the image difference of a science and template image using
1458 the Alard & Lupton (1998) algorithm.
1459 """
1460 ConfigClass = SimplifiedSubtractConfig
1461 _DefaultName = "simplifiedSubtract"
1462
1463 @timeMethod
1464 def run(self, template, science, visitSummary=None, inputPsfMatchingKernel=None):
1465 """PSF match, subtract, and decorrelate two images.
1466
1467 Parameters
1468 ----------
1469 template : `lsst.afw.image.ExposureF`
1470 Template exposure, warped to match the science exposure.
1471 science : `lsst.afw.image.ExposureF`
1472 Science exposure to subtract from the template.
1473 visitSummary : `lsst.afw.table.ExposureCatalog`, optional
1474 Exposure catalog with external calibrations to be applied. Catalog
1475 uses the detector id for the catalog id, sorted on id for fast
1476 lookup.
1477 inputPsfMatchingKernel : `lsst.afw.math.Kernel`, optional
1478 Pre-existing PSF matching kernel to use for convolution.
1479 Required, and only used, if ``config.useExistingKernel`` is set.
1480
1481 Returns
1482 -------
1483 results : `lsst.pipe.base.Struct`
1484 ``difference`` : `lsst.afw.image.ExposureF`
1485 Result of subtracting template and science.
1486 ``matchedTemplate`` : `lsst.afw.image.ExposureF`
1487 Warped and PSF-matched template exposure.
1488 ``backgroundModel`` : `lsst.afw.math.Function2D`
1489 Background model that was fit while solving for the
1490 PSF-matching kernel
1491 ``psfMatchingKernel`` : `lsst.afw.math.Kernel`
1492 Kernel used to PSF-match the convolved image.
1493 ``kernelSources` : `lsst.afw.table.SourceCatalog`
1494 Sources detected on the science image that were used to
1495 construct the PSF-matching kernel.
1496
1497 Raises
1498 ------
1499 lsst.pipe.base.NoWorkFound
1500 Raised if fraction of good pixels, defined as not having NO_DATA
1501 set, is less then the configured requiredTemplateFraction
1502 """
1503 self._prepareInputs(template, science, visitSummary=visitSummary)
1504
1505 convolveTemplate = self.chooseConvolutionMethod(template, science)
1506
1507 if self.config.useExistingKernel:
1508 psfMatchingKernel = inputPsfMatchingKernel
1509 backgroundModel = None
1510 kernelSources = None
1511 else:
1512 kernelResult = self.runMakeKernel(template, science, convolveTemplate=convolveTemplate,
1513 runSourceDetection=True)
1514 psfMatchingKernel = kernelResult.psfMatchingKernel
1515 kernelSources = kernelResult.kernelSources
1516 if self.config.doSubtractBackground:
1517 backgroundModel = kernelResult.backgroundModel
1518 else:
1519 backgroundModel = None
1520 if convolveTemplate:
1521 subtractResults = self.runConvolveTemplate(template, science, psfMatchingKernel,
1522 backgroundModel=backgroundModel)
1523 else:
1524 subtractResults = self.runConvolveScience(template, science, psfMatchingKernel,
1525 backgroundModel=backgroundModel)
1526 if kernelSources is not None:
1527 subtractResults.kernelSources = kernelSources
1528 return subtractResults
1529
1530
1531def _interpolateImage(maskedImage, badMaskPlanes, fallbackValue=None):
1532 """Replace masked image pixels with interpolated values.
1533
1534 Parameters
1535 ----------
1536 maskedImage : `lsst.afw.image.MaskedImage`
1537 Image on which to perform interpolation.
1538 badMaskPlanes : `list` of `str`
1539 List of mask planes to interpolate over.
1540 fallbackValue : `float`, optional
1541 Value to set when interpolation fails.
1542
1543 Returns
1544 -------
1545 result: `float`
1546 The number of masked pixels that were replaced.
1547 """
1548 imgBadMaskPlanes = [
1549 maskPlane for maskPlane in badMaskPlanes if maskPlane in maskedImage.mask.getMaskPlaneDict()
1550 ]
1551
1552 image = maskedImage.image.array
1553 badPixels = (maskedImage.mask.array & maskedImage.mask.getPlaneBitMask(imgBadMaskPlanes)) > 0
1554 image[badPixels] = np.nan
1555 if fallbackValue is None:
1556 fallbackValue = np.nanmedian(image)
1557 # For this initial implementation, skip the interpolation and just fill with
1558 # the median value.
1559 image[badPixels] = fallbackValue
1560 return np.sum(badPixels)
Parameters to control convolution.
run(self, template, science, sources, visitSummary=None)
runPreconvolve(self, template, science, matchedScience, kernelSources, preConvKernel)
_prepareInputs(self, template, science, visitSummary=None)
runConvolveTemplate(self, template, science, psfMatchingKernel, backgroundModel=None)
runQuantum(self, butlerQC, inputRefs, outputRefs)
run(self, template, science, sources, visitSummary=None)
runConvolveScience(self, template, science, psfMatchingKernel, backgroundModel=None)
_calculateMagLim(self, exposure, nsigma=5.0, fallbackPsfSize=None)
runMakeKernel(self, template, science, sources=None, convolveTemplate=True, runSourceDetection=False)
_convolveExposure(self, exposure, kernel, convolutionControl, bbox=None, psf=None, photoCalib=None, interpolateBadMaskPlanes=False)
_sourceSelector(self, template, science, sources, fallback=False, preconvolved=False)
finalize(self, template, science, difference, kernel, templateMatched=True, preConvMode=False, preConvKernel=None, spatiallyVarying=False)
run(self, template, science, visitSummary=None, inputPsfMatchingKernel=None)
Provides consistent interface for LSST exceptions.
Definition Exception.h:107
Reports invalid arguments.
Definition Runtime.h:66
Reports when the result of an operation cannot be represented by the destination type.
Definition Runtime.h:115
void convolve(OutImageT &convolvedImage, InImageT const &inImage, KernelT const &kernel, ConvolutionControl const &convolutionControl=ConvolutionControl())
Convolve an Image or MaskedImage with a Kernel, setting pixels of an existing output image.
_subtractImages(science, template, backgroundModel=None)
checkTemplateIsSufficient(templateExposure, scienceExposure, logger, requiredTemplateFraction=0., exceptionMessage="")
_interpolateImage(maskedImage, badMaskPlanes, fallbackValue=None)
_shapeTest(exp1, exp2, fwhmExposureBuffer, fwhmExposureGrid)