LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
PolynomialFunction1d.cc
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 
23 #include <vector>
24 
28 
29 
30 namespace lsst { namespace geom { namespace polynomials {
31 
33  auto const & basis = f.getBasis();
34  std::vector<SafeSum<double>> sums(basis.size());
35  double const s = basis.getScaling().getScale();
36  double const v = basis.getScaling().getShift();
37  double sn = 1; // s^n
38  BinomialMatrix binomial(basis.getNested().getOrder());
39  for (std::size_t n = 0; n < basis.size(); ++n, sn *= s) {
40  double vk = 1; // v^k
41  for (std::size_t k = 0; k <= n; ++k, vk *= v) {
42  sums[n - k] += sn*binomial(n, k)*f[n]*vk;
43  }
44  }
45  Eigen::VectorXd result = Eigen::VectorXd::Zero(basis.size());
46  for (std::size_t n = 0; n < basis.size(); ++n) {
47  result[n] = static_cast<double>(sums[n]);
48  }
49  return makeFunction1d(basis.getNested(), result);
50 }
51 
52 }}} // namespace lsst::geom::polynomials
py::object result
Definition: _schema.cc:429
A class that computes binomial coefficients up to a certain power.
A 1-d function defined by a series expansion and its coefficients.
Definition: Function1d.h:42
Basis const & getBasis() const
Return the associated Basis1d object.
Definition: Function1d.h:98
PolynomialFunction1d simplified(ScaledPolynomialFunction1d const &f)
Calculate the standard polynomial function that is equivalent to a scaled standard polynomial functio...
Function1d< Basis > makeFunction1d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function1d of the appropriate type from a Basis1d and an Eigen object containing coefficient...
Definition: Function1d.h:144
A base class for image defects.
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361