24 #ifndef LSST_MEAS_MODELFIT_SemiEmpiricalPrior_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_SemiEmpiricalPrior_h_INCLUDED
30 namespace lsst {
namespace meas {
namespace modelfit {
36 "Width of exponential ellipticity distribution (conformal shear units)."
41 "Softened core width for ellipticity distribution (conformal shear units)."
51 "ln(radius) at which the softened cutoff begins towards the minimum"
56 "Mean of the Student's T distribution used for ln(radius) at large radius, and the transition "
57 "point between a flat distribution and the Student's T."
62 "Width of the Student's T distribution in ln(radius)."
67 "Number of degrees of freedom for the Student's T distribution on ln(radius)."
93 ndarray::Array<Scalar const,1,1>
const & nonlinear,
94 ndarray::Array<Scalar const,1,1>
const &
amplitudes
99 ndarray::Array<Scalar const,1,1>
const & nonlinear,
100 ndarray::Array<Scalar const,1,1>
const &
amplitudes,
101 ndarray::Array<Scalar,1,1>
const & nonlinearGradient,
102 ndarray::Array<Scalar,1,1>
const & amplitudeGradient,
103 ndarray::Array<Scalar,2,1>
const & nonlinearHessian,
104 ndarray::Array<Scalar,2,1>
const & amplitudeHessian,
105 ndarray::Array<Scalar,2,1>
const & crossHessian
111 ndarray::Array<Scalar const,1,1>
const & nonlinear
117 ndarray::Array<Scalar const,1,1>
const & nonlinear,
124 ndarray::Array<Scalar const,1,1>
const & nonlinear,
126 ndarray::Array<Scalar,2,1>
const &
amplitudes,
127 ndarray::Array<Scalar,1,1>
const & weights,
128 bool multiplyWeights=
false
table::Key< table::Array< double > > amplitudes
A class that can be used to generate sequences of random numbers according to a number of different a...
Base class for Bayesian priors.
A piecewise prior motivated by both real distributions and practical considerations.
Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &litudes) const override
Compute the amplitude vector that maximizes the prior x likelihood product.
Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const override
Return the -log amplitude integral of the prior*likelihood product.
Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &litudes) const override
Evaluate the prior at the given point in nonlinear and amplitude space.
void drawAmplitudes(Vector const &gradient, Matrix const &fisher, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &litudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const override
Draw a set of Monte Carlo amplitude vectors.
void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &litudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &litudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &litudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const override
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space.
SemiEmpiricalPriorControl Control
SemiEmpiricalPrior(Control const &ctrl=Control())
#define LSST_CONTROL_FIELD(NAME, TYPE, DOC)
A preprocessor macro used to define fields in C++ "control object" structs.
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
double Scalar
Typedefs to be used for probability and parameter values.
A base class for image defects.
double logRadiusMinInner
"ln(radius) at which the softened cutoff begins towards the minimum" ;
double logRadiusNu
"Number of degrees of freedom for the Student's T distribution on ln(radius)." ;
double logRadiusSigma
"Width of the Student's T distribution in ln(radius)." ;
double logRadiusMinOuter
"Minimum ln(radius)." ;
double ellipticityCore
"Softened core width for ellipticity distribution (conformal shear units)." ;
void validate() const
Raise InvalidParameterException if the configuration options are invalid.
double ellipticitySigma
"Width of exponential ellipticity distribution (conformal shear units)." ;
SemiEmpiricalPriorControl()
double logRadiusMu
"Mean of the Student's T distribution used for ln(radius) at large radius, and the transition " "poin...