LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
SipApproximation.cc
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 
23 #include <algorithm>
24 #include <vector>
25 
26 #include "Eigen/QR"
29 
30 namespace lsst { namespace afw { namespace geom {
31 
32 namespace poly = lsst::geom::polynomials;
33 
34 namespace {
35 
37  int order,
38  lsst::geom::Box2D const & box,
39  double svdThreshold,
42 ) {
43  // The scaled polynomial basis evaluates polynomials after mapping the
44  // input coordinates from the given box to [-1, 1]x[-1, 1] (for numerical
45  // stability).
47  auto workspace = basis.makeWorkspace();
48  Eigen::MatrixXd matrix = Eigen::MatrixXd::Zero(input.size(), basis.size());
49  Eigen::VectorXd xRhs(input.size());
50  Eigen::VectorXd yRhs(input.size());
51  for (int i = 0; i < matrix.rows(); ++i) {
52  basis.fill(input[i], matrix.row(i), workspace);
53  auto rhs = output[i] - input[i];
54  xRhs[i] = rhs.getX();
55  yRhs[i] = rhs.getY();
56  }
57  // Since we're not trying to null the zeroth- and first-order terms, the
58  // solution is just linear least squares, and we can do that with SVD.
59  auto decomp = matrix.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV);
60  if (svdThreshold >= 0) {
61  decomp.setThreshold(svdThreshold);
62  }
63  auto scaledX = makeFunction2d(basis, decomp.solve(xRhs));
64  auto scaledY = makeFunction2d(basis, decomp.solve(yRhs));
65  // On return, we simplify the polynomials by moving the remapping transform
66  // into the coefficients themselves.
67  return std::make_pair(simplified(scaledX), simplified(scaledY));
68 }
69 
70 // Return a vector of points on a grid, covering the given bounding box.
72  lsst::geom::Extent2I const & shape) {
73  if (shape.getX() <= 0 || shape.getY() <= 0) {
74  throw LSST_EXCEPT(
75  pex::exceptions::InvalidParameterError,
76  "Grid shape must be positive."
77  );
78  }
80  points.reserve(shape.getX()*shape.getY());
81  double const dx = bbox.getWidth()/shape.getX();
82  double const dy = bbox.getHeight()/shape.getY();
83  for (int iy = 0; iy < shape.getY(); ++iy) {
84  double const y = bbox.getMinY() + iy*dy;
85  for (int ix = 0; ix < shape.getX(); ++ix) {
86  points.emplace_back(bbox.getMinX() + ix*dx, y);
87  }
88  }
89  return points;
90 }
91 
92 // Make a polynomial object (with packed coefficients) from a square coefficients matrix.
93 poly::PolynomialFunction2dYX makePolynomialFromCoeffMatrix(ndarray::Array<double const, 2> const & coeffs) {
94  LSST_THROW_IF_NE(coeffs.getSize<0>(), coeffs.getSize<1>(), pex::exceptions::InvalidParameterError,
95  "Coefficient matrix must be square (%d != %d).");
96  poly::PolynomialBasis2dYX basis(coeffs.getSize<0>() - 1);
97  Eigen::VectorXd packed(basis.size());
98  for (auto const & i : basis.getIndices()) {
99  packed[i.flat] = coeffs[i.nx][i.ny];
100  }
101  return poly::PolynomialFunction2dYX(basis, packed);
102 }
103 
104 } // anonymous
105 
106 // Private implementation object for SipApproximation that manages the grid of points on which
107 // we evaluate the exact transform.
109 
110  // Set up the grid.
111  Grid(lsst::geom::Extent2I const & shape_, SipApproximation const & parent);
112 
113  lsst::geom::Extent2I const shape; // number of grid points in each dimension
114  std::vector<lsst::geom::Point2D> dpix1; // [pixel coords] - CRPIX
115  std::vector<lsst::geom::Point2D> siwc; // CD^{-1}([intermediate world coords])
116  std::vector<lsst::geom::Point2D> dpix2; // round-tripped version of dpix1 if useInverse, or exactly dpix1
117 };
118 
119 // Private implementation object for SipApproximation that manages the solution
121 
122  static std::unique_ptr<Solution> fit(int order_, double svdThreshold, SipApproximation const & parent);
123 
125  poly::PolynomialFunction2dYX const & b_,
126  poly::PolynomialFunction2dYX const & ap_,
127  poly::PolynomialFunction2dYX const & bp_) :
128  a(a_), b(b_), ap(ap_), bp(bp_)
129  {
130  LSST_THROW_IF_NE(a.getBasis().getOrder(), b.getBasis().getOrder(),
132  "A and B polynomials must have the same order (%d != %d).");
133  LSST_THROW_IF_NE(a.getBasis().getOrder(), ap.getBasis().getOrder(),
135  "A and AP polynomials must have the same order (%d != %d).");
136  LSST_THROW_IF_NE(a.getBasis().getOrder(), bp.getBasis().getOrder(),
138  "A and BP polynomials must have the same order (%d != %d).");
139  }
140 
142 
143  Workspace makeWorkspace() const { return a.makeWorkspace(); }
144 
146  return dpix + lsst::geom::Extent2D(a(dpix, ws), b(dpix, ws));
147  }
148 
150  return siwc + lsst::geom::Extent2D(ap(siwc, ws), bp(siwc, ws));
151  }
152 
157 };
158 
160  shape(shape_),
161  dpix1(makeGrid(parent._bbox, shape)),
162  siwc(parent._pixelToIwc->applyForward(dpix1))
163 {
164  // Apply the CRPIX offset to make pix1 into dpix1 (in-place)
165  std::for_each(dpix1.begin(), dpix1.end(), [&parent](lsst::geom::Point2D & p){ p -= parent._crpix; });
166 
167  if (parent._useInverse) {
168  // Set from the given inverse of the given pixels-to-iwc transform
169  // Note that at this point, siwc is still just iwc, because the scaling by cdInv is later.
170  dpix2 = parent._pixelToIwc->applyInverse(siwc);
171  // Apply the CRPIX offset to make pix1 into dpix2 (in-place)
172  std::for_each(dpix2.begin(), dpix2.end(), [&parent](lsst::geom::Point2D & p){ p -= parent._crpix; });
173  } else {
174  // Just make dpix2 = dpix1, and hence fit to the true inverse of pixels-to-iwc.
175  dpix2 = dpix1;
176  }
177 
178  // Apply the CD^{-1} transform to siwc
179  std::for_each(siwc.begin(), siwc.end(), [&parent](lsst::geom::Point2D & p){ p = parent._cdInv(p); });
180 }
181 
183  int order,
184  double svdThreshold,
185  SipApproximation const & parent
186 ) {
188  if (basis.size() > parent._grid->dpix1.size()) {
189  throw LSST_EXCEPT(
191  (boost::format("Number of parameters (%d) is larger than number of data points (%d)")
192  % (2*basis.size()) % (2*parent._grid->dpix1.size())).str()
193  );
194  }
195 
196  lsst::geom::Box2D boxFwd(parent._bbox);
197  boxFwd.shift(-parent._crpix);
198  auto fwd = fitSipOneDirection(order, boxFwd, svdThreshold, parent._grid->dpix1, parent._grid->siwc);
199 
200  lsst::geom::Box2D boxInv;
201  for (auto const & point : parent._grid->siwc) {
202  boxInv.include(point);
203  }
204  auto inv = fitSipOneDirection(order, boxInv, svdThreshold, parent._grid->siwc, parent._grid->dpix2);
205 
206  return std::make_unique<Solution>(fwd.first, fwd.second, inv.first, inv.second);
207 }
208 
211  lsst::geom::Point2D const & crpix,
212  Eigen::Matrix2d const & cd,
213  lsst::geom::Box2D const & bbox,
214  lsst::geom::Extent2I const & gridShape,
215  int order,
216  bool useInverse,
217  double svdThreshold
218 ) :
219  _useInverse(useInverse),
220  _pixelToIwc(std::move(pixelToIwc)),
221  _bbox(bbox),
222  _crpix(crpix),
223  _cdInv(lsst::geom::LinearTransform(cd).inverted()),
224  _grid(new Grid(gridShape, *this)),
225  _solution(Solution::fit(order, svdThreshold, *this))
226 {}
227 
230  lsst::geom::Point2D const & crpix,
231  Eigen::Matrix2d const & cd,
232  lsst::geom::Box2D const & bbox,
233  lsst::geom::Extent2I const & gridShape,
234  ndarray::Array<double const, 2> const & a,
235  ndarray::Array<double const, 2> const & b,
236  ndarray::Array<double const, 2> const & ap,
237  ndarray::Array<double const, 2> const & bp,
238  bool useInverse
239 ) :
240  _useInverse(useInverse),
241  _pixelToIwc(std::move(pixelToIwc)),
242  _bbox(bbox),
243  _crpix(crpix),
244  _cdInv(lsst::geom::LinearTransform(cd).inverted()),
245  _grid(new Grid(gridShape, *this)),
246  _solution(
247  new Solution(
248  makePolynomialFromCoeffMatrix(a),
249  makePolynomialFromCoeffMatrix(b),
250  makePolynomialFromCoeffMatrix(ap),
251  makePolynomialFromCoeffMatrix(bp)
252  )
253  )
254 {}
255 
256 SipApproximation::~SipApproximation() noexcept = default;
257 
258 int SipApproximation::getOrder() const noexcept {
259  return _solution->a.getBasis().getOrder();
260 }
261 
262 double SipApproximation::getA(int p, int q) const {
263  return _solution->a[_solution->a.getBasis().index(p, q)];
264 }
265 
266 double SipApproximation::getB(int p, int q) const {
267  return _solution->b[_solution->b.getBasis().index(p, q)];
268 }
269 
270 double SipApproximation::getAP(int p, int q) const {
271  return _solution->ap[_solution->ap.getBasis().index(p, q)];
272 }
273 
274 double SipApproximation::getBP(int p, int q) const {
275  return _solution->bp[_solution->bp.getBasis().index(p, q)];
276 }
277 
278 namespace {
279 
280 template <typename F>
281 Eigen::MatrixXd makeCoefficientMatrix(std::size_t order, F getter) {
282  Eigen::MatrixXd result = Eigen::MatrixXd::Zero(order + 1, order + 1);
283  for (std::size_t p = 0; p <= order; ++p) {
284  for (std::size_t q = 0; q <= order - p; ++q) {
285  result(p, q) = getter(p, q);
286  }
287  }
288  return result;
289 }
290 
291 } // anonymous
292 
293 Eigen::MatrixXd SipApproximation::getA() const noexcept {
294  return makeCoefficientMatrix(
295  getOrder(),
296  [this](int p, int q) { return getA(p, q); }
297  );
298 }
299 
300 Eigen::MatrixXd SipApproximation::getB() const noexcept {
301  return makeCoefficientMatrix(
302  getOrder(),
303  [this](int p, int q) { return getB(p, q); }
304  );
305 }
306 
307 Eigen::MatrixXd SipApproximation::getAP() const noexcept {
308  return makeCoefficientMatrix(
309  getOrder(),
310  [this](int p, int q) { return getAP(p, q); }
311  );
312 }
313 
314 Eigen::MatrixXd SipApproximation::getBP() const noexcept {
315  return makeCoefficientMatrix(
316  getOrder(),
317  [this](int p, int q) { return getBP(p, q); }
318  );
319 }
320 
322  auto cd = _cdInv.inverted();
323  auto ws = _solution->makeWorkspace();
324  return cd(_solution->applyForward(pix - _crpix, ws));
325 }
326 
328  std::vector<lsst::geom::Point2D> const & pix) const {
329  auto ws = _solution->makeWorkspace();
331  iwc.reserve(pix.size());
332  auto cd = _cdInv.inverted();
333  for (auto const & point : pix) {
334  iwc.push_back(cd(_solution->applyForward(point - _crpix, ws)));
335  }
336  return iwc;
337 }
338 
340  auto ws = _solution->makeWorkspace();
341  return _solution->applyInverse(_cdInv(iwc), ws) + _crpix;
342 }
343 
345  std::vector<lsst::geom::Point2D> const & iwc) const {
346  auto ws = _solution->makeWorkspace();
348  pix.reserve(iwc.size());
349  for (auto const & point : iwc) {
350  pix.push_back(_solution->applyInverse(_cdInv(point), ws) + _crpix);
351  }
352  return pix;
353 }
354 
356  return lsst::geom::Extent2D(_bbox.getWidth()/_grid->shape.getX(),
357  _bbox.getHeight()/_grid->shape.getY());
358 }
359 
361  return _grid->shape;
362 }
363 
365  _grid = std::make_unique<Grid>(shape, *this);
366 }
367 
369  // We shrink the grid spacing by the given factor, which is not the same
370  // as increasing the number of grid points by that factor, because there
371  // is one more grid point that step in each dimension.
372  lsst::geom::Extent2I unit(1);
373  updateGrid((_grid->shape - unit)*f + unit);
374 }
375 
376 void SipApproximation::fit(int order, double svdThreshold) {
377  _solution = Solution::fit(order, svdThreshold, *this);
378 }
379 
381  std::pair<double, double> maxDiff(0.0, 0.0);
382  auto ws = _solution->makeWorkspace();
383  for (std::size_t i = 0; i < _grid->dpix1.size(); ++i) {
384  auto siwc2 = _solution->applyForward(_grid->dpix1[i], ws);
385  auto dpix2 = _solution->applyInverse(_grid->siwc[i], ws);
386  maxDiff.first = std::max(maxDiff.first, (_grid->siwc[i] - siwc2).computeNorm());
387  maxDiff.second = std::max(maxDiff.second, (_grid->dpix2[i] - dpix2).computeNorm());
388  }
389  return maxDiff;
390 }
391 
392 }}} // namespace lsst::afw::geom
py::object result
Definition: _schema.cc:429
AmpInfoBoxKey bbox
Definition: Amplifier.cc:117
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition: Exception.h:48
table::PointKey< double > crpix
Definition: OldWcs.cc:129
table::Key< table::Array< double > > cd
Definition: OldWcs.cc:130
int y
Definition: SpanSet.cc:48
table::Key< int > b
table::Key< int > a
#define LSST_THROW_IF_NE(N1, N2, EXC_CLASS, MSG)
Check whether the given values are equal, and throw an LSST Exception if they are not.
Definition: asserts.h:38
A fitter and results class for approximating a general Transform in a form compatible with FITS WCS p...
void fit(int order, double svdThreshold=-1)
Obtain a new solution at the given order with the current grid.
lsst::geom::Extent2I getGridShape() const noexcept
Return the number of grid points in x and y.
Eigen::MatrixXd getBP() const noexcept
Return the coefficients of the reverse transform polynomial.
Eigen::MatrixXd getAP() const noexcept
Return the coefficients of the reverse transform polynomial.
Eigen::MatrixXd getA() const noexcept
Return the coefficients of the forward transform polynomial.
int getOrder() const noexcept
Return the polynomial order of the current solution (same for forward and reverse).
lsst::geom::Extent2D getGridStep() const noexcept
Return the distance between grid points in pixels.
void updateGrid(lsst::geom::Extent2I const &shape)
Update the grid to the given number of points in x and y.
void refineGrid(int factor=2)
Update the grid by making it finer by a given integer factor.
lsst::geom::Point2D applyInverse(lsst::geom::Point2D const &iwcs) const
Convert a point from intermediate world coordinates to pixels.
Eigen::MatrixXd getB() const noexcept
Return the coefficients of the forward transform polynomial.
std::pair< double, double > computeMaxDeviation() const noexcept
Return the maximum deviation of the solution from the exact transform on the current grid.
lsst::geom::Point2D applyForward(lsst::geom::Point2D const &pix) const
Convert a point from pixels to intermediate world coordinates.
SipApproximation(std::shared_ptr< TransformPoint2ToPoint2 > pixelToIwc, lsst::geom::Point2D const &crpix, Eigen::Matrix2d const &cd, lsst::geom::Box2D const &bbox, lsst::geom::Extent2I const &gridShape, int order, bool useInverse=true, double svdThreshold=-1)
Construct a new approximation by fitting on a grid of points.
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
void shift(Extent2D const &offset)
Shift the position of the box by the given offset.
Definition: Box.cc:350
double getWidth() const noexcept
1-d interval accessors
Definition: Box.h:529
void include(Point2D const &point) noexcept
Expand this to ensure that this->contains(point).
Definition: Box.cc:380
double getHeight() const noexcept
1-d interval accessors
Definition: Box.h:530
LinearTransform const inverted() const
Return the inverse transform.
A 2-d function defined by a series expansion and its coefficients.
Definition: Function2d.h:42
Workspace makeWorkspace() const
Allocate workspace that can be passed to operator() to avoid repeated memory allocations.
Definition: Function2d.h:107
Basis const & getBasis() const
Return the associated Basis2d object.
Definition: Function2d.h:101
typename Basis::Workspace Workspace
Type returned by makeWorkspace().
Definition: Function2d.h:52
A Basis2d formed from the product of a Basis1d for each of x and y, truncated at the sum of their ord...
Definition: PackedBasis2d.h:75
Reports invalid arguments.
Definition: Runtime.h:66
Reports errors in the logical structure of the program.
Definition: Runtime.h:46
T emplace_back(T... args)
T for_each(T... args)
T make_pair(T... args)
T max(T... args)
Low-level polynomials (including special polynomials) in C++.
Definition: Basis1d.h:26
PolynomialFunction1d simplified(ScaledPolynomialFunction1d const &f)
Calculate the standard polynomial function that is equivalent to a scaled standard polynomial functio...
PolynomialFunction2d< PackingOrder::YX > PolynomialFunction2dYX
A Function2d for standard polynomials, ordered via PackingOrder::YX.
Function2d< Basis > makeFunction2d(Basis const &basis, Eigen::VectorXd const &coefficients)
Create a Function2d of the appropriate type from a Basis2d and an Eigen object containing coefficient...
Definition: Function2d.h:155
ScaledPolynomialBasis2d< PackingOrder::YX > ScaledPolynomialBasis2dYX
A Basis2d for scaled standard polynomials, ordered via PackingOrder::YX.
Extent< double, 2 > Extent2D
Definition: Extent.h:400
def format(config, name=None, writeSourceLine=True, prefix="", verbose=False)
Definition: history.py:174
A base class for image defects.
STL namespace.
T push_back(T... args)
T reserve(T... args)
T size(T... args)
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
Grid(lsst::geom::Extent2I const &shape_, SipApproximation const &parent)
std::vector< lsst::geom::Point2D > dpix1
std::vector< lsst::geom::Point2D > dpix2
std::vector< lsst::geom::Point2D > siwc
static std::unique_ptr< Solution > fit(int order_, double svdThreshold, SipApproximation const &parent)
lsst::geom::Point2D applyInverse(lsst::geom::Point2D const &siwc, Workspace &ws) const
Solution(poly::PolynomialFunction2dYX const &a_, poly::PolynomialFunction2dYX const &b_, poly::PolynomialFunction2dYX const &ap_, poly::PolynomialFunction2dYX const &bp_)
lsst::geom::Point2D applyForward(lsst::geom::Point2D const &dpix, Workspace &ws) const
poly::PolynomialFunction2dYX::Workspace Workspace
table::Key< int > order