LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
DipoleAlgorithms.cc
Go to the documentation of this file.
1 /*
2  * LSST Data Management System
3  * Copyright 2008-2015 AURA/LSST
4  *
5  * This product includes software developed by the
6  * LSST Project (http://www.lsst.org/).
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the LSST License Statement and
19  * the GNU General Public License along with this program. If not,
20  * see <http://www.lsstcorp.org/LegalNotices/>.
21  */
22 
26 #include <iostream> // std::cout
27 #include <algorithm> // std::sort
28 #include <limits> // std::numeric_limits
29 #include <cmath> // std::sqrt
30 
31 #if !defined(DOXYGEN)
32 # include "Minuit2/FCNBase.h"
33 # include "Minuit2/FunctionMinimum.h"
34 # include "Minuit2/MnMigrad.h"
35 # include "Minuit2/MnMinos.h"
36 # include "Minuit2/MnPrint.h"
37 #endif
38 
39 #include <memory>
40 #include "lsst/pex/exceptions.h"
41 #include "lsst/afw/image.h"
42 #include "lsst/afw/detection.h"
43 #include "lsst/afw/table.h"
44 #include "lsst/afw/math.h"
45 #include "lsst/geom.h"
47 #include "ndarray/eigen.h"
48 
50 namespace afwDet = lsst::afw::detection;
51 namespace afwImage = lsst::afw::image;
52 namespace afwMath = lsst::afw::math;
53 namespace geom = lsst::geom;
54 
55 namespace lsst { namespace ip { namespace diffim {
56 
57 namespace {
58 meas::base::FlagDefinitionList dipoleFluxFlagDefinitions;
59 }
60 
61 meas::base::FlagDefinition const DipoleFluxAlgorithm::FAILURE = dipoleFluxFlagDefinitions.addFailureFlag("general failure flag, set if anything went wrong");
62 meas::base::FlagDefinition const DipoleFluxAlgorithm::POS_FLAG = dipoleFluxFlagDefinitions.add("pos_flag", "failure flag for positive, set if anything went wrong");
63 meas::base::FlagDefinition const DipoleFluxAlgorithm::NEG_FLAG = dipoleFluxFlagDefinitions.add("neg_flag", "failure flag for negative, set if anything went wrong");
64 
66  return dipoleFluxFlagDefinitions;
67 }
68 
69 namespace {
70 meas::base::FlagDefinitionList dipoleCentroidFlagDefinitions;
71 }
72 
73 meas::base::FlagDefinition const DipoleCentroidAlgorithm::FAILURE = dipoleCentroidFlagDefinitions.addFailureFlag("general failure flag, set if anything went wrong");
74 meas::base::FlagDefinition const DipoleCentroidAlgorithm::POS_FLAG = dipoleCentroidFlagDefinitions.add("pos_flag", "failure flag for positive, set if anything went wrong");
75 meas::base::FlagDefinition const DipoleCentroidAlgorithm::NEG_FLAG = dipoleCentroidFlagDefinitions.add("neg_flag", "failure flag for negative, set if anything went wrong");
76 
78  return dipoleCentroidFlagDefinitions;
79 }
80 
81  int const NEGCENTXPAR(0); // Parameter for the x-component of the negative lobe centroid
82  int const NEGCENTYPAR(1); // Parameter for the y-component of the negative lobe centroid
83  int const NEGFLUXPAR(2); // Parameter for the flux of the negative lobe
84  int const POSCENTXPAR(3); // Parameter for the x-component of the positive lobe centroid
85  int const POSCENTYPAR(4); // Parameter for the y-component of the positive lobe centroid
86  int const POSFLUXPAR(5); // Parameter for the flux of the positive lobe
87 
88 
89 namespace {
90 
91 void naiveCentroid(
93  afw::image::Exposure<float> const& exposure,
94  geom::Point2I const & center,
96  )
97 {
98  typedef afw::image::Image<float> ImageT;
99  ImageT const& image = *exposure.getMaskedImage().getImage();
100  // set to the input centroid, just in case all else fails
101  source.set(keys.getX(), center.getX());
102  source.set(keys.getY(), center.getY());
103 
104  int x = center.getX() - image.getX0();
105  int y = center.getY() - image.getY0();
106 
107  if (x < 1 || x >= image.getWidth() - 1 || y < 1 || y >= image.getHeight() - 1) {
109  (boost::format("Object at (%d, %d) is too close to the edge")
110  % x % y).str());
111  }
112 
113  ImageT::xy_locator im = image.xy_at(x, y);
114 
115  double const sum =
116  (im(-1, 1) + im( 0, 1) + im( 1, 1) +
117  im(-1, 0) + im( 0, 0) + im( 1, 0) +
118  im(-1, -1) + im( 0, -1) + im( 1, -1));
119 
120 
121  if (sum == 0.0) {
123  (boost::format("Object at (%d, %d) has no counts") %
124  x % y).str());
125  }
126 
127  double const sum_x =
128  -im(-1, 1) + im( 1, 1) +
129  -im(-1, 0) + im( 1, 0) +
130  -im(-1, -1) + im( 1, -1);
131  double const sum_y =
132  (im(-1, 1) + im( 0, 1) + im( 1, 1)) -
133  (im(-1, -1) + im( 0, -1) + im( 1, -1));
134 
135  float xx = afw::image::indexToPosition(x + image.getX0()) + sum_x / sum;
136  float yy = afw::image::indexToPosition(y + image.getY0()) + sum_y / sum;
137  source.set(keys.getX(), xx);
138  source.set(keys.getY(), yy);
139 }
140 
141 } // anonymous namespace
142 
143 
145  Control const & ctrl,
146  std::string const & name,
148 ) : DipoleCentroidAlgorithm(ctrl, name, schema, "unweighted first moment centroid"),
149  _ctrl(ctrl)
150 { }
151 
157  afw::image::Exposure<float> const & exposure
158 ) const {
159  afw::detection::PeakCatalog const& peaks = source.getFootprint()->getPeaks();
160 
161  int posInd = 0;
162  double posValue = peaks[posInd].getPeakValue(), negValue = 0;
163  if (posValue < 0.) { /* All peaks are negative so use the *most* negative value */
164  posInd = peaks.size() - 1;
165  posValue = peaks[posInd].getPeakValue();
166  }
167  naiveCentroid(source, exposure, peaks[posInd].getI(),
168  (posValue >= 0 ? getPositiveKeys() : getNegativeKeys()));
169 
170  if (posValue > 0. && posInd == 0 && peaks.size() > 1) { /* See if there's also a negative peak */
171  int negInd = peaks.size() - 1;
172  negValue = peaks[negInd].getPeakValue();
173  if (posValue > 0. && negValue < 0.) {
174  naiveCentroid(source, exposure, peaks[negInd].getI(),
175  (negValue >= 0 ? getPositiveKeys() : getNegativeKeys()));
176  }
177  }
178 
179  mergeCentroids(source, posValue, negValue);
180 
181 }
182 
184  double posValue, double negValue) const {
185 
186  double pos_x, pos_y, pos_f;
187  double neg_x, neg_y, neg_f;
188 
189  pos_x = source.get(getPositiveKeys().getX());
190  pos_y = source.get(getPositiveKeys().getY());
191  pos_f = posValue;
192 
193  neg_x = source.get(getNegativeKeys().getX());
194  neg_y = source.get(getNegativeKeys().getY());
195  neg_f = -negValue;
196 
197  if(std::isfinite(pos_x) && std::isfinite(pos_y) &&
198  std::isfinite(neg_x) && std::isfinite(neg_y)) {
199  source.set(getCenterKeys().getX(), (pos_x * pos_f + neg_x * neg_f) / (pos_f + neg_f));
200  source.set(getCenterKeys().getY(), (pos_y * pos_f + neg_y * neg_f) / (pos_f + neg_f));
201  } else if (std::isfinite(pos_x) && std::isfinite(pos_y)) {
202  source.set(getCenterKeys().getX(), pos_x);
203  source.set(getCenterKeys().getY(), pos_y);
204  } else {
205  source.set(getCenterKeys().getX(), neg_x);
206  source.set(getCenterKeys().getY(), neg_y);
207  }
208 }
209 
212  _flagHandler.handleFailure(measRecord, error);
213 }
214 
215 
216 namespace {
217 
218 class NaiveDipoleFootprinter {
219 public:
220  explicit NaiveDipoleFootprinter() : _sumPositive(0.0), _sumNegative(0.0), _numPositive(0),
221  _numNegative(0) {}
222 
224  void reset() {
225  _sumPositive = _sumNegative = 0.0;
226  _numPositive = _numNegative = 0;
227  }
228  void reset(afwDet::Footprint const&) {}
229 
231  void operator() (geom::Point2I const & pos,
234  if (ival >= 0.0) {
235  _sumPositive += ival;
236  _varPositive += vval;
237  ++_numPositive;
238  } else {
239  _sumNegative += ival;
240  _varPositive += vval;
241  ++_numNegative;
242  }
243  }
244 
245  double getSumPositive() const { return _sumPositive; }
246  double getSumNegative() const { return _sumNegative; }
247  double getVarPositive() const { return _sumPositive; }
248  double getVarNegative() const { return _sumNegative; }
249  int getNumPositive() const { return _numPositive; }
250  int getNumNegative() const { return _numNegative; }
251 
252 private:
253  double _sumPositive;
254  double _sumNegative;
255  double _varPositive;
256  double _varNegative;
257  int _numPositive;
258  int _numNegative;
259 };
260 
261 } // anonymous namespace
262 
263 
269  afw::image::Exposure<float> const & exposure
270 ) const {
271  typedef afw::image::Exposure<float>::MaskedImageT MaskedImageT;
272 
273  NaiveDipoleFootprinter functor;
274  source.getFootprint()->getSpans()->applyFunctor(functor, *(exposure.getMaskedImage().getImage()),
275  *(exposure.getMaskedImage().getVariance()));
276 
277  source.set(getPositiveKeys().getInstFlux(), functor.getSumPositive());
278  source.set(getPositiveKeys().getInstFluxErr(), ::sqrt(functor.getVarPositive()));
279  source.set(_numPositiveKey, functor.getNumPositive());
280 
281  source.set(getNegativeKeys().getInstFlux(), functor.getSumNegative());
282  source.set(getNegativeKeys().getInstFluxErr(), ::sqrt(functor.getVarNegative()));
283  source.set(_numNegativeKey, functor.getNumNegative());
284  functor.reset();
285 }
286 
288  _flagHandler.handleFailure(measRecord, error);
289 }
290 
291 
295 class MinimizeDipoleChi2 : public ROOT::Minuit2::FCNBase {
296 public:
297  explicit MinimizeDipoleChi2(PsfDipoleFlux const& psfDipoleFlux,
299  afw::image::Exposure<float> const& exposure
300  ) : _errorDef(1.0),
301  _nPar(6),
302  _maxPix(1e4),
303  _bigChi2(1e10),
304  _psfDipoleFlux(psfDipoleFlux),
305  _source(source),
306  _exposure(exposure)
307  {}
308  double Up() const { return _errorDef; }
309  void setErrorDef(double def) { _errorDef = def; }
310  int getNpar() const { return _nPar; }
311  int getMaxPix() const { return _maxPix; }
312  void setMaxPix(int maxPix) { _maxPix = maxPix; }
313 
314  // Evaluate our cost function (in this case chi^2)
315  virtual double operator()(std::vector<double> const & params) const {
316  double negCenterX = params[NEGCENTXPAR];
317  double negCenterY = params[NEGCENTYPAR];
318  double negFlux = params[NEGFLUXPAR];
319  double posCenterX = params[POSCENTXPAR];
320  double posCenterY = params[POSCENTYPAR];
321  double posFlux = params[POSFLUXPAR];
322 
323  /* Restrict negative dipole to be negative; positive to be positive */
324  if ((negFlux > 0.0) || (posFlux < 0.0)) {
325  return _bigChi2;
326  }
327 
328  std::pair<double,int> fit = _psfDipoleFlux.chi2(_source, _exposure, negCenterX, negCenterY, negFlux,
329  posCenterX, posCenterY, posFlux);
330  double chi2 = fit.first;
331  int nPix = fit.second;
332  if (nPix > _maxPix) {
333  return _bigChi2;
334  }
335 
336  return chi2;
337  }
338 
339 private:
340  double _errorDef; // how much cost function has changed at the +- 1 error points
341  int _nPar; // number of parameters in the fit; hard coded for MinimizeDipoleChi2
342  int _maxPix; // maximum number of pixels that shoud be in the footprint;
343  // prevents too much centroid wander
344  double _bigChi2; // large value to tell fitter when it has gone into bad region of parameter space
345 
346  PsfDipoleFlux const& _psfDipoleFlux;
347  afw::table::SourceRecord & _source;
348  afw::image::Exposure<float> const& _exposure;
349 };
350 
353  afw::image::Exposure<float> const& exposure,
354  double negCenterX, double negCenterY, double negFlux,
355  double posCenterX, double posCenterY, double posFlux
356 ) const {
357 
358  geom::Point2D negCenter(negCenterX, negCenterY);
359  geom::Point2D posCenter(posCenterX, posCenterY);
360 
361  std::shared_ptr<afw::detection::Footprint const> footprint = source.getFootprint();
362 
363  /*
364  * Fit for the superposition of Psfs at the two centroids.
365  */
367  std::shared_ptr<afwImage::Image<afwMath::Kernel::Pixel>> negPsf = psf->computeImage(negCenter);
368  std::shared_ptr<afwImage::Image<afwMath::Kernel::Pixel>> posPsf = psf->computeImage(posCenter);
369 
370  afwImage::Image<double> negModel(footprint->getBBox());
371  afwImage::Image<double> posModel(footprint->getBBox());
372  afwImage::Image<float> data(*(exposure.getMaskedImage().getImage()),footprint->getBBox());
374  footprint->getBBox());
375 
376  geom::Box2I negPsfBBox = negPsf->getBBox();
377  geom::Box2I posPsfBBox = posPsf->getBBox();
378  geom::Box2I negModelBBox = negModel.getBBox();
379  geom::Box2I posModelBBox = posModel.getBBox();
380 
381  // Portion of the negative Psf that overlaps the model
382  int negXmin = std::max(negPsfBBox.getMinX(), negModelBBox.getMinX());
383  int negYmin = std::max(negPsfBBox.getMinY(), negModelBBox.getMinY());
384  int negXmax = std::min(negPsfBBox.getMaxX(), negModelBBox.getMaxX());
385  int negYmax = std::min(negPsfBBox.getMaxY(), negModelBBox.getMaxY());
386  geom::Box2I negBBox = geom::Box2I(geom::Point2I(negXmin, negYmin),
387  geom::Point2I(negXmax, negYmax));
388  afwImage::Image<afwMath::Kernel::Pixel> negSubim(*negPsf, negBBox);
389  afwImage::Image<double> negModelSubim(negModel, negBBox);
390  negModelSubim += negSubim;
391 
392  // Portion of the positive Psf that overlaps the model
393  int posXmin = std::max(posPsfBBox.getMinX(), posModelBBox.getMinX());
394  int posYmin = std::max(posPsfBBox.getMinY(), posModelBBox.getMinY());
395  int posXmax = std::min(posPsfBBox.getMaxX(), posModelBBox.getMaxX());
396  int posYmax = std::min(posPsfBBox.getMaxY(), posModelBBox.getMaxY());
397  geom::Box2I posBBox = geom::Box2I(geom::Point2I(posXmin, posYmin),
398  geom::Point2I(posXmax, posYmax));
399  afwImage::Image<afwMath::Kernel::Pixel> posSubim(*posPsf, posBBox);
400  afwImage::Image<double> posModelSubim(posModel, posBBox);
401  posModelSubim += posSubim;
402 
403  negModel *= negFlux; // scale negative model to image
404  posModel *= posFlux; // scale positive model to image
405  afwImage::Image<double> residuals(negModel, true); // full model contains negative lobe...
406  residuals += posModel; // plus positive lobe...
407  residuals -= data; // minus the data...
408  residuals *= residuals; // squared...
409  residuals /= var; // divided by the variance : [(model-data)/sigma]**2
411  double chi2 = stats.getValue(afwMath::SUM);
412  int nPix = stats.getValue(afwMath::NPOINT);
413  return std::pair<double,int>(chi2, nPix);
414 }
415 
418  afw::image::Exposure<float> const & exposure
419 ) const {
420 
421  typedef afw::image::Exposure<float>::MaskedImageT MaskedImageT;
422 
423  std::shared_ptr<afw::detection::Footprint const> footprint = source.getFootprint();
424  if (!footprint) {
426  (boost::format("No footprint for source %d") % source.getId()).str());
427  }
428 
429  afw::detection::PeakCatalog peakCatalog = afw::detection::PeakCatalog(footprint->getPeaks());
430 
431  if (peakCatalog.size() == 0) {
433  (boost::format("No peak for source %d") % source.getId()).str());
434  }
435  else if (peakCatalog.size() == 1) {
436  // No deblending to do
437  return;
438  }
439 
440  // For N>=2, just measure the brightest-positive and brightest-negative
441  // peaks. peakCatalog is automatically ordered by peak flux, with the most
442  // positive one (brightest) being first
443  afw::detection::PeakRecord const& positivePeak = peakCatalog.front();
444  afw::detection::PeakRecord const& negativePeak = peakCatalog.back();
445 
446  // Set up fit parameters and param names
447  ROOT::Minuit2::MnUserParameters fitPar;
448 
449  fitPar.Add((boost::format("P%d")%NEGCENTXPAR).str(), negativePeak.getFx(), _ctrl.stepSizeCoord);
450  fitPar.Add((boost::format("P%d")%NEGCENTYPAR).str(), negativePeak.getFy(), _ctrl.stepSizeCoord);
451  fitPar.Add((boost::format("P%d")%NEGFLUXPAR).str(), negativePeak.getPeakValue(), _ctrl.stepSizeFlux);
452  fitPar.Add((boost::format("P%d")%POSCENTXPAR).str(), positivePeak.getFx(), _ctrl.stepSizeCoord);
453  fitPar.Add((boost::format("P%d")%POSCENTYPAR).str(), positivePeak.getFy(), _ctrl.stepSizeCoord);
454  fitPar.Add((boost::format("P%d")%POSFLUXPAR).str(), positivePeak.getPeakValue(), _ctrl.stepSizeFlux);
455 
456  // Create the minuit object that knows how to minimise our functor
457  //
458  MinimizeDipoleChi2 minimizerFunc(*this, source, exposure);
459  minimizerFunc.setErrorDef(_ctrl.errorDef);
460 
461  //
462  // tell minuit about it
463  //
464  ROOT::Minuit2::MnMigrad migrad(minimizerFunc, fitPar);
465 
466  //
467  // And let it loose
468  //
469  ROOT::Minuit2::FunctionMinimum min = migrad(_ctrl.maxFnCalls);
470 
471  float minChi2 = min.Fval();
472  bool const isValid = min.IsValid() && std::isfinite(minChi2);
473 
474  if (true || isValid) { // calculate coeffs even in minuit is unhappy
475 
476  /* I need to call chi2 one more time to grab nPix to calculate chi2/dof.
477  Turns out that the Minuit operator method has to be const, and the
478  measurement _apply method has to be const, so I can't store nPix as a
479  private member variable anywhere. Consted into a corner.
480  */
481  std::pair<double,int> fit = chi2(source, exposure,
482  min.UserState().Value(NEGCENTXPAR),
483  min.UserState().Value(NEGCENTYPAR),
484  min.UserState().Value(NEGFLUXPAR),
485  min.UserState().Value(POSCENTXPAR),
486  min.UserState().Value(POSCENTYPAR),
487  min.UserState().Value(POSFLUXPAR));
488  double evalChi2 = fit.first;
489  int nPix = fit.second;
490 
491  std::shared_ptr<geom::Point2D> minNegCentroid(new geom::Point2D(min.UserState().Value(NEGCENTXPAR),
492  min.UserState().Value(NEGCENTYPAR)));
493  source.set(getNegativeKeys().getInstFlux(), min.UserState().Value(NEGFLUXPAR));
494  source.set(getNegativeKeys().getInstFluxErr(), min.UserState().Error(NEGFLUXPAR));
495 
496  std::shared_ptr<geom::Point2D> minPosCentroid(new geom::Point2D(min.UserState().Value(POSCENTXPAR),
497  min.UserState().Value(POSCENTYPAR)));
498  source.set(getPositiveKeys().getInstFlux(), min.UserState().Value(POSFLUXPAR));
499  source.set(getPositiveKeys().getInstFluxErr(), min.UserState().Error(POSFLUXPAR));
500 
501  source.set(_chi2dofKey, evalChi2 / (nPix - minimizerFunc.getNpar()));
502  source.set(_negCentroid.getX(), minNegCentroid->getX());
503  source.set(_negCentroid.getY(), minNegCentroid->getY());
504  source.set(_posCentroid.getX(), minPosCentroid->getX());
505  source.set(_posCentroid.getY(), minPosCentroid->getY());
506  source.set(_avgCentroid.getX(), 0.5*(minNegCentroid->getX() + minPosCentroid->getX()));
507  source.set(_avgCentroid.getY(), 0.5*(minNegCentroid->getY() + minPosCentroid->getY()));
508 
509  }
510 }
511 
513  _flagHandler.handleFailure(measRecord, error);
514 }
515 }}} // namespace lsst::ip::diffim
table::Key< std::string > name
Definition: Amplifier.cc:116
char * data
Definition: BaseRecord.cc:61
int min
double x
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition: Exception.h:48
afw::table::Key< afw::table::Array< ImagePixelT > > image
int y
Definition: SpanSet.cc:48
table::Schema schema
Definition: python.h:134
Class to describe the properties of a detected object from an image.
Definition: Footprint.h:63
Record class that represents a peak in a Footprint.
Definition: Peak.h:42
float getPeakValue() const
Definition: Peak.h:240
MaskedImageT getMaskedImage()
Return the MaskedImage.
Definition: Exposure.h:228
std::shared_ptr< lsst::afw::detection::Psf const > getPsf() const
Return the Exposure's Psf object.
Definition: Exposure.h:327
PixelT Pixel
A pixel in this ImageBase.
Definition: ImageBase.h:115
lsst::geom::Box2I getBBox(ImageOrigin origin=PARENT) const
Definition: ImageBase.h:445
A class to represent a 2-dimensional array of pixels.
Definition: Image.h:51
A class to manipulate images, masks, and variance as a single object.
Definition: MaskedImage.h:73
VariancePtr getVariance() const
Return a (shared_ptr to) the MaskedImage's variance.
Definition: MaskedImage.h:1051
ImagePtr getImage() const
Return a (shared_ptr to) the MaskedImage's image.
Definition: MaskedImage.h:1018
A class to evaluate image statistics.
Definition: Statistics.h:220
double getValue(Property const prop=NOTHING) const
Return the value of the desired property (if specified in the constructor)
Definition: Statistics.cc:1047
size_type size() const
Return the number of elements in the catalog.
Definition: Catalog.h:413
reference back() const
Return the last record.
Definition: Catalog.h:461
reference front() const
Return the first record.
Definition: Catalog.h:458
Defines the fields and offsets for a table.
Definition: Schema.h:51
Record class that contains measurements made on a single exposure.
Definition: Source.h:78
An integer coordinate rectangle.
Definition: Box.h:55
int getMinY() const noexcept
Definition: Box.h:158
int getMinX() const noexcept
Definition: Box.h:157
int getMaxX() const noexcept
Definition: Box.h:161
int getMaxY() const noexcept
Definition: Box.h:162
Intermediate base class for algorithms that compute a centroid.
static meas::base::FlagDefinition const FAILURE
static meas::base::FlagDefinition const POS_FLAG
static meas::base::FlagDefinition const NEG_FLAG
static meas::base::FlagDefinitionList const & getFlagDefinitions()
static meas::base::FlagDefinitionList const & getFlagDefinitions()
static meas::base::FlagDefinition const POS_FLAG
static meas::base::FlagDefinition const NEG_FLAG
ResultKey const & getNegativeKeys() const
static meas::base::FlagDefinition const FAILURE
ResultKey const & getPositiveKeys() const
Return the standard flux keys registered by this algorithm.
Class to minimize PsfDipoleFlux; this is the object that Minuit minimizes.
virtual double operator()(std::vector< double > const &params) const
MinimizeDipoleChi2(PsfDipoleFlux const &psfDipoleFlux, afw::table::SourceRecord &source, afw::image::Exposure< float > const &exposure)
ResultKey const & getNegativeKeys() const
NaiveDipoleCentroid(Control const &ctrl, std::string const &name, afw::table::Schema &schema)
ResultKey const & getCenterKeys() const
Return the standard centroid keys registered by this algorithm.
ResultKey const & getPositiveKeys() const
void measure(afw::table::SourceRecord &measRecord, afw::image::Exposure< float > const &exposure) const
Given an image and a pixel position, return a Centroid using a naive 3x3 weighted moment.
void mergeCentroids(afw::table::SourceRecord &source, double posValue, double negValue) const
void fail(afw::table::SourceRecord &measRecord, meas::base::MeasurementError *error=NULL) const
Handle an exception thrown by the current algorithm by setting flags in the given record.
void measure(afw::table::SourceRecord &measRecord, afw::image::Exposure< float > const &exposure) const
Given an image and a pixel position, return a Centroid using a naive 3x3 weighted moment.
void fail(afw::table::SourceRecord &measRecord, meas::base::MeasurementError *error=NULL) const
Handle an exception thrown by the current algorithm by setting flags in the given record.
float stepSizeCoord
"Default initial step size for coordinates in non-linear fitter" ;
double errorDef
"How many sigma the error bars of the non-linear fitter represent" ;
float stepSizeFlux
"Default initial step size for flux in non-linear fitter" ;
int maxFnCalls
"Maximum function calls for non-linear fitter; 0 = unlimited" ;
Implementation of Psf dipole flux.
std::pair< double, int > chi2(afw::table::SourceRecord &source, afw::image::Exposure< float > const &exposure, double negCenterX, double negCenterY, double negFlux, double posCenterX, double poCenterY, double posFlux) const
void measure(afw::table::SourceRecord &measRecord, afw::image::Exposure< float > const &exposure) const
Called to measure a single child source in an image.
void fail(afw::table::SourceRecord &measRecord, meas::base::MeasurementError *error=NULL) const
Handle an exception thrown by the current algorithm by setting flags in the given record.
A FunctorKey for CentroidResult.
afw::table::Key< CentroidElement > getY() const
Return a Key for the y coordinate.
afw::table::Key< CentroidElement > getX() const
Return a Key for the x coordinate.
vector-type utility class to build a collection of FlagDefinitions
Definition: FlagHandler.h:60
void handleFailure(afw::table::BaseRecord &record, MeasurementError const *error=nullptr) const
Handle an expected or unexpected Exception thrown by a measurement algorithm.
Definition: FlagHandler.cc:76
Exception to be thrown when a measurement algorithm experiences a known failure mode.
Definition: exceptions.h:48
Reports attempts to exceed implementation-defined length limits for some classes.
Definition: Runtime.h:76
Reports errors that are due to events beyond the control of the program.
Definition: Runtime.h:104
bool isValid
Definition: fits.cc:399
T isfinite(T... args)
T max(T... args)
T min(T... args)
const char * source()
Source function that allows astChannel to source from a Stream.
Definition: Stream.h:224
afw::table::CatalogT< PeakRecord > PeakCatalog
Definition: Peak.h:244
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
double indexToPosition(double ind)
Convert image index to image position.
Definition: ImageUtils.h:55
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)
Definition: Statistics.h:359
@ SUM
find sum of pixels in the image
Definition: Statistics.h:77
@ NPOINT
number of sample points
Definition: Statistics.h:65
int const NEGFLUXPAR(2)
int const NEGCENTXPAR(0)
int const NEGCENTYPAR(1)
int const POSFLUXPAR(5)
int const POSCENTXPAR(3)
int const POSCENTYPAR(4)
def format(config, name=None, writeSourceLine=True, prefix="", verbose=False)
Definition: history.py:174
A base class for image defects.
Simple class used to define and document flags The name and doc constitute the identity of the FlagDe...
Definition: FlagHandler.h:40
Key< int > psf
Definition: Exposure.cc:65