LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
_statistics.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2008-2016 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
23#include <pybind11/pybind11.h>
24#include <lsst/utils/python.h>
25#include <pybind11/stl.h>
26
28
29namespace py = pybind11;
30using namespace pybind11::literals;
31
32namespace lsst {
33namespace afw {
34namespace math {
35
36template <typename Pixel>
37void declareStatistics(lsst::utils::python::WrapperCollection &wrappers) {
38 wrappers.wrap([](auto &mod) {
39 mod.def("makeStatistics",
40 (Statistics(*)(image::Image<Pixel> const &, image::Mask<image::MaskPixel> const &, int const,
41 StatisticsControl const &))makeStatistics<Pixel>,
42 "img"_a, "msk"_a, "flags"_a, "sctrl"_a = StatisticsControl());
43 mod.def("makeStatistics",
44 (Statistics(*)(image::MaskedImage<Pixel> const &, int const,
45 StatisticsControl const &))makeStatistics<Pixel>,
46 "mimg"_a, "flags"_a, "sctrl"_a = StatisticsControl());
47 mod.def("makeStatistics",
49 int const, StatisticsControl const &))makeStatistics<Pixel>,
50 "mimg"_a, "weights"_a, "flags"_a, "sctrl"_a = StatisticsControl());
51 mod.def("makeStatistics",
52 (Statistics(*)(image::Mask<image::MaskPixel> const &, int const, StatisticsControl const &))
53 makeStatistics, // this is not a template, just a regular overload
54 "msk"_a, "flags"_a, "sctrl"_a = StatisticsControl());
55 mod.def("makeStatistics",
56 (Statistics(*)(image::Image<Pixel> const &, int const,
57 StatisticsControl const &))makeStatistics<Pixel>,
58 "img"_a, "flags"_a, "sctrl"_a = StatisticsControl());
59 });
60}
61
62template <typename Pixel>
63void declareStatisticsVectorOverloads(lsst::utils::python::WrapperCollection &wrappers) {
64 wrappers.wrap([](auto &mod) {
65 mod.def("makeStatistics",
66 (Statistics(*)(std::vector<Pixel> const &, int const,
67 StatisticsControl const &))makeStatistics<Pixel>,
68 "v"_a, "flags"_a, "sctrl"_a = StatisticsControl());
69 mod.def("makeStatistics",
70 (Statistics(*)(std::vector<Pixel> const &, std::vector<WeightPixel> const &, int const,
71 StatisticsControl const &))makeStatistics<Pixel>,
72 "v"_a, "vweights"_a, "flags"_a, "sctrl"_a = StatisticsControl());
73 });
74}
75
76void declareStatistics(lsst::utils::python::WrapperCollection &wrappers) {
77 /* Module level */
78 wrappers.wrapType(py::enum_<Property>(wrappers.module, "Property", py::arithmetic()),
79 [](auto &mod, auto &enm) {
80 enm.value("NOTHING", Property::NOTHING);
81 enm.value("ERRORS", Property::ERRORS);
82 enm.value("NPOINT", Property::NPOINT);
83 enm.value("MEAN", Property::MEAN);
84 enm.value("STDEV", Property::STDEV);
85 enm.value("VARIANCE", Property::VARIANCE);
86 enm.value("MEDIAN", Property::MEDIAN);
87 enm.value("IQRANGE", Property::IQRANGE);
88 enm.value("MEANCLIP", Property::MEANCLIP);
89 enm.value("STDEVCLIP", Property::STDEVCLIP);
90 enm.value("VARIANCECLIP", Property::VARIANCECLIP);
91 enm.value("MIN", Property::MIN);
92 enm.value("MAX", Property::MAX);
93 enm.value("SUM", Property::SUM);
94 enm.value("MEANSQUARE", Property::MEANSQUARE);
95 enm.value("ORMASK", Property::ORMASK);
96 enm.value("NCLIPPED", Property::NCLIPPED);
97 enm.value("NMASKED", Property::NMASKED);
98 enm.export_values();
99 });
100
101 wrappers.wrap([](auto &mod) { mod.def("stringToStatisticsProperty", stringToStatisticsProperty); });
102
103 using PyClass = py::class_<StatisticsControl, std::shared_ptr<StatisticsControl>>;
104 auto control = wrappers.wrapType(PyClass(wrappers.module, "StatisticsControl"), [](auto &mod, auto &cls) {
105 cls.def(py::init<double, int, lsst::afw::image::MaskPixel, bool,
106 typename StatisticsControl::WeightsBoolean>(),
107 "numSigmaClip"_a = 3.0, "numIter"_a = 3, "andMask"_a = 0x0, "isNanSafe"_a = true,
108 "useWeights"_a = StatisticsControl::WEIGHTS_NONE);
109
110 cls.def("getMaskPropagationThreshold", &StatisticsControl::getMaskPropagationThreshold);
111 cls.def("setMaskPropagationThreshold", &StatisticsControl::setMaskPropagationThreshold);
112 cls.def("getNumSigmaClip", &StatisticsControl::getNumSigmaClip);
113 cls.def("getNumIter", &StatisticsControl::getNumIter);
114 cls.def("getAndMask", &StatisticsControl::getAndMask);
115 cls.def("getNoGoodPixelsMask", &StatisticsControl::getNoGoodPixelsMask);
116 cls.def("getNanSafe", &StatisticsControl::getNanSafe);
117 cls.def("getWeighted", &StatisticsControl::getWeighted);
118 cls.def("getWeightedIsSet", &StatisticsControl::getWeightedIsSet);
119 cls.def("getCalcErrorFromInputVariance", &StatisticsControl::getCalcErrorFromInputVariance);
120 cls.def("setNumSigmaClip", &StatisticsControl::setNumSigmaClip);
121 cls.def("setNumIter", &StatisticsControl::setNumIter);
122 cls.def("setAndMask", &StatisticsControl::setAndMask);
123 cls.def("setNoGoodPixelsMask", &StatisticsControl::setNoGoodPixelsMask);
124 cls.def("setNanSafe", &StatisticsControl::setNanSafe);
125 cls.def("setWeighted", &StatisticsControl::setWeighted);
126 cls.def("setCalcErrorFromInputVariance", &StatisticsControl::setCalcErrorFromInputVariance);
127 });
128
129 wrappers.wrapType(py::enum_<StatisticsControl::WeightsBoolean>(control, "WeightsBoolean"),
130 [](auto &mod, auto &enm) {
131 enm.value("WEIGHTS_FALSE", StatisticsControl::WeightsBoolean::WEIGHTS_FALSE);
132 enm.value("WEIGHTS_TRUE", StatisticsControl::WeightsBoolean::WEIGHTS_TRUE);
133 enm.value("WEIGHTS_NONE", StatisticsControl::WeightsBoolean::WEIGHTS_NONE);
134 enm.export_values();
135 });
136
137 wrappers.wrapType(py::class_<Statistics>(wrappers.module, "Statistics"), [](auto &mod, auto &cls) {
138 cls.def("getResult", &Statistics::getResult, "prop"_a = Property::NOTHING);
139 cls.def("getError", &Statistics::getError, "prop"_a = Property::NOTHING);
140 cls.def("getValue", &Statistics::getValue, "prop"_a = Property::NOTHING);
141 cls.def("getOrMask", &Statistics::getOrMask);
142 });
143}
144void wrapStatistics(lsst::utils::python::WrapperCollection &wrappers) {
145 wrappers.addSignatureDependency("lsst.afw.image");
146 declareStatistics(wrappers);
147 declareStatistics<unsigned short>(wrappers);
148 declareStatistics<double>(wrappers);
149 declareStatistics<float>(wrappers);
150 declareStatistics<int>(wrappers);
151 // Declare vector overloads separately to prevent casting errors
152 // that otherwise (mysteriously) occur when overloads are tried
153 // in order.
154 declareStatisticsVectorOverloads<unsigned short>(wrappers);
155 declareStatisticsVectorOverloads<double>(wrappers);
156 declareStatisticsVectorOverloads<float>(wrappers);
157 declareStatisticsVectorOverloads<int>(wrappers);
158}
159} // namespace math
160} // namespace afw
161} // namespace lsst
A class to represent a 2-dimensional array of pixels.
Definition: Image.h:51
Represent a 2-dimensional array of bitmask pixels.
Definition: Mask.h:77
A class to manipulate images, masks, and variance as a single object.
Definition: MaskedImage.h:73
Pass parameters to a Statistics object.
Definition: Statistics.h:92
void declareStatistics(lsst::utils::python::WrapperCollection &wrappers)
Definition: _statistics.cc:37
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)
Definition: Statistics.h:359
void wrapStatistics(lsst::utils::python::WrapperCollection &)
Definition: _statistics.cc:144
Property stringToStatisticsProperty(std::string const property)
Conversion function to switch a string to a Property (see Statistics.h)
Definition: Statistics.cc:738
void declareStatisticsVectorOverloads(lsst::utils::python::WrapperCollection &wrappers)
Definition: _statistics.cc:63
py::class_< PixelAreaBoundedField, std::shared_ptr< PixelAreaBoundedField >, BoundedField > PyClass
A base class for image defects.