LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
HtmPixelization.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2016 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
25
27
28#include "lsst/sphgeom/curve.h"
30
31#include "PixelFinder.h"
32
33
34namespace lsst {
35namespace sphgeom {
36
37namespace {
38
39// `rootVertex` returns the i-th (0-3) root vertex of HTM root triangle r (0-8).
40UnitVector3d const & rootVertex(int r, int i) {
41 static UnitVector3d const VERTICES[8][3] = {
50 };
51 return VERTICES[r][i];
52}
53
54// `HtmPixelFinder` locates trixels that intersect a region.
55template <typename RegionType, bool InteriorOnly>
56class HtmPixelFinder: public detail::PixelFinder<
57 HtmPixelFinder<RegionType, InteriorOnly>, RegionType, InteriorOnly, 3>
58{
59 using Base = detail::PixelFinder<
60 HtmPixelFinder<RegionType, InteriorOnly>, RegionType, InteriorOnly, 3>;
61 using Base::visit;
62
63public:
64 HtmPixelFinder(RangeSet & ranges,
65 RegionType const & region,
66 int level,
67 size_t maxRanges):
68 Base(ranges, region, level, maxRanges)
69 {}
70
71 void operator()() {
72 UnitVector3d trixel[3];
73 // Loop over HTM root triangles.
74 for (uint64_t r = 0; r < 8; ++r) {
75 for (int v = 0; v < 3; ++v) {
76 trixel[v] = rootVertex(r, v);
77 }
78 visit(trixel, r + 8, 0);
79 }
80 }
81
82 void subdivide(UnitVector3d const * trixel, uint64_t index, int level) {
83 UnitVector3d mid[3] = {
84 UnitVector3d(trixel[1] + trixel[2]),
85 UnitVector3d(trixel[2] + trixel[0]),
86 UnitVector3d(trixel[0] + trixel[1])
87 };
88 UnitVector3d child[3] = {trixel[0], mid[2], mid[1]};
89 index *= 4;
90 ++level;
91 visit(child, index, level);
92 child[0] = trixel[1];
93 child[1] = mid[0];
94 child[2] = mid[2];
95 ++index;
96 visit(child, index, level);
97 child[0] = trixel[2];
98 child[1] = mid[1];
99 child[2] = mid[0];
100 ++index;
101 visit(child, index, level);
102 ++index;
103 visit(mid, index, level);
104 }
105};
106
107} // unnamed namespace
108
109
110int HtmPixelization::level(uint64_t i) {
111 // An HTM index consists of 4 bits encoding the root triangle
112 // number (8 - 15), followed by 2l bits, where each of the l bit pairs
113 // encodes a child triangle number (0-3), and l is the desired level.
114 int j = log2(i);
115 // The level l is derivable from the index j of the MSB of i.
116 // For i to be valid, j must be an odd integer > 1.
117 if ((j & 1) == 0 || (j == 1)) {
118 return -1;
119 }
120 return (j - 3) >> 1;
121}
122
124 int l = level(i);
125 if (l < 0 || l > MAX_LEVEL) {
126 throw std::invalid_argument("Invalid HTM index");
127 }
128 l *= 2;
129 uint64_t r = (i >> l) & 7;
130 UnitVector3d v0 = rootVertex(r, 0);
131 UnitVector3d v1 = rootVertex(r, 1);
132 UnitVector3d v2 = rootVertex(r, 2);
133 for (l -= 2; l >= 0; l -= 2) {
134 int child = (i >> l) & 3;
135 UnitVector3d m12 = UnitVector3d(v1 + v2);
136 UnitVector3d m20 = UnitVector3d(v2 + v0);
137 UnitVector3d m01 = UnitVector3d(v0 + v1);
138 switch (child) {
139 case 0: v1 = m01; v2 = m20; break;
140 case 1: v0 = v1; v1 = m12; v2 = m01; break;
141 case 2: v0 = v2; v1 = m20; v2 = m12; break;
142 case 3: v0 = m12; v1 = m20; v2 = m01; break;
143 }
144 }
145 return ConvexPolygon(v0, v1, v2);
146}
147
149 char s[MAX_LEVEL + 2];
150 int l = level(i);
151 if (l < 0 || l > MAX_LEVEL) {
152 throw std::invalid_argument("Invalid HTM index");
153 }
154 // Print in base-4, from least to most significant digit.
155 char * p = s + (sizeof(s) - 1);
156 for (; l >= 0; --l, --p, i >>= 2) {
157 *p = '0' + (i & 3);
158 }
159 // The remaining bit corresponds to the hemisphere.
160 *p = (i & 1) == 0 ? 'S' : 'N';
161 return std::string(p, sizeof(s) - static_cast<size_t>(p - s));
162}
163
164HtmPixelization::HtmPixelization(int level) : _level(level) {
165 if (level < 0 || level > MAX_LEVEL) {
166 throw std::invalid_argument("Invalid HTM subdivision level");
167 }
168}
169
170uint64_t HtmPixelization::index(UnitVector3d const & v) const {
171 // Find the root triangle containing v.
172 uint64_t r;
173 if (v.z() < 0.0) {
174 // v is in the southern hemisphere (root triangle 0, 1, 2, or 3).
175 if (v.y() > 0.0) {
176 r = (v.x() > 0.0) ? 0 : 1;
177 } else if (v.y() == 0.0) {
178 r = (v.x() >= 0.0) ? 0 : 2;
179 } else {
180 r = (v.x() < 0.0) ? 2 : 3;
181 }
182 } else {
183 // v is in the northern hemisphere (root triangle 4, 5, 6, or 7).
184 if (v.y() > 0.0) {
185 r = (v.x() > 0.0) ? 7 : 6;
186 } else if (v.y() == 0.0) {
187 r = (v.x() >= 0.0) ? 7 : 5;
188 } else {
189 r = (v.x() < 0.0) ? 5 : 4;
190 }
191 }
192 UnitVector3d v0 = rootVertex(r, 0);
193 UnitVector3d v1 = rootVertex(r, 1);
194 UnitVector3d v2 = rootVertex(r, 2);
195 uint64_t i = r + 8;
196 for (int l = 0; l < _level; ++l) {
197 UnitVector3d m01 = UnitVector3d(v0 + v1);
198 UnitVector3d m20 = UnitVector3d(v2 + v0);
199 i <<= 2;
200 if (orientation(v, m01, m20) >= 0) {
201 v1 = m01; v2 = m20;
202 continue;
203 }
204 UnitVector3d m12 = UnitVector3d(v1 + v2);
205 if (orientation(v, m12, m01) >= 0) {
206 v0 = v1; v1 = m12; v2 = m01;
207 i += 1;
208 } else if (orientation(v, m20, m12) >= 0) {
209 v0 = v2; v1 = m20; v2 = m12;
210 i += 2;
211 } else {
212 v0 = m12; v1 = m20; v2 = m01;
213 i += 3;
214 }
215 }
216 return i;
217}
218
219RangeSet HtmPixelization::_envelope(Region const & r, size_t maxRanges) const {
220 return detail::findPixels<HtmPixelFinder, false>(r, maxRanges, _level);
221}
222
223RangeSet HtmPixelization::_interior(Region const & r, size_t maxRanges) const {
224 return detail::findPixels<HtmPixelFinder, true>(r, maxRanges, _level);
225}
226
227}} // namespace lsst::sphgeom
This file declares a Pixelization subclass for the HTM indexing scheme.
This file provides a base class for pixel finders.
ConvexPolygon is a closed convex polygon on the unit sphere.
Definition: ConvexPolygon.h:57
static constexpr int MAX_LEVEL
MAX_LEVEL is the maximum supported HTM subdivision level.
uint64_t index(UnitVector3d const &) const override
index computes the index of the pixel for v.
static std::string asString(uint64_t i)
asString converts the given HTM index to a human readable string.
static int level(uint64_t i)
level returns the subdivision level of the given HTM index.
static ConvexPolygon triangle(uint64_t i)
triangle returns the triangle corresponding to the given HTM index.
HtmPixelization(int level)
This constructor creates an HTM pixelization of the sphere with the given subdivision level.
A RangeSet is a set of unsigned 64 bit integers.
Definition: RangeSet.h:99
Region is a minimal interface for 2-dimensional regions on the unit sphere.
Definition: Region.h:79
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
Definition: UnitVector3d.h:55
static UnitVector3d Z()
Definition: UnitVector3d.h:101
static UnitVector3d Y()
Definition: UnitVector3d.h:97
static UnitVector3d X()
Definition: UnitVector3d.h:93
void visit(UnitVector3d const *pixel, uint64_t index, int level)
Definition: PixelFinder.h:81
This file contains functions for space-filling curves.
int orientation(UnitVector3d const &a, UnitVector3d const &b, UnitVector3d const &c)
orientation computes and returns the orientations of 3 unit vectors a, b and c.
Definition: orientation.cc:135
uint8_t log2(uint64_t x)
Definition: curve.h:98
A base class for image defects.
This file declares functions for orienting points on the sphere.