LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
UnitVector3d.h
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2014-2015 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
23#ifndef LSST_SPHGEOM_UNITVECTOR3D_H_
24#define LSST_SPHGEOM_UNITVECTOR3D_H_
25
28
29#include "LonLat.h"
30#include "Vector3d.h"
31
32
33namespace lsst {
34namespace sphgeom {
35
56public:
59 static UnitVector3d orthogonalTo(Vector3d const & v);
60
65 static UnitVector3d orthogonalTo(Vector3d const & v1, Vector3d const & v2);
66
72 static UnitVector3d northFrom(Vector3d const & v);
73
77 UnitVector3d u; u._v = Vector3d(-sin(a), cos(a), 0.0); return u;
78 }
79
83 UnitVector3d u; u._v = v; return u;
84 }
85
89 static UnitVector3d fromNormalized(double x, double y, double z) {
90 UnitVector3d u; u._v = Vector3d(x, y, z); return u;
91 }
92
93 static UnitVector3d X() {
94 return UnitVector3d();
95 }
96
97 static UnitVector3d Y() {
98 UnitVector3d u; u._v = Vector3d(0.0, 1.0, 0.0); return u;
99 }
100
101 static UnitVector3d Z() {
102 UnitVector3d u; u._v = Vector3d(0.0, 0.0, 1.0); return u;
103 }
104
106 UnitVector3d() : _v(1.0, 0.0, 0.0) {}
107
108 UnitVector3d(UnitVector3d const &v) = default;
109
112 explicit UnitVector3d(Vector3d const & v) : _v(v) {
113 _v.normalize();
114 }
115
116 UnitVector3d(double x, double y, double z) : _v(x, y, z) {
117 _v.normalize();
118 }
120
123 explicit UnitVector3d(LonLat const & p) {
124 *this = UnitVector3d(p.getLon(), p.getLat());
125 }
126
129 UnitVector3d(Angle lon, Angle lat);
130
134 operator Vector3d const & () const { return _v; }
135
136 bool operator==(Vector3d const & v) const { return _v == v; }
137 bool operator!=(Vector3d const & v) const { return _v != v; }
138
140 double const * getData() const { return _v.getData(); }
141
143 double operator()(int i) const { return _v(i); }
144
145 double x() const { return _v.x(); }
146
147 double y() const { return _v.y(); }
148
149 double z() const { return _v.z(); }
150
152 double dot(Vector3d const & v) const { return _v.dot(v); }
153
155 Vector3d cross(Vector3d const & v) const { return _v.cross(v); }
156
162 return (v + *this).cross(v - *this);
163 }
164
167 UnitVector3d u; u._v = -_v; return u;
168 }
169
172 Vector3d operator*(double s) const { return _v * s; }
173
176 Vector3d operator/(double s) const { return _v / s; }
177
179 Vector3d operator+(Vector3d const & v) const { return _v + v; }
180
183 Vector3d operator-(Vector3d const & v) const { return _v - v; }
184
187 Vector3d cwiseProduct(Vector3d const & v) const {
188 return _v.cwiseProduct(v);
189 }
190
194 return UnitVector3d(_v.rotatedAround(k, a));
195 }
196
197private:
198 Vector3d _v;
199};
200
201
202std::ostream & operator<<(std::ostream &, UnitVector3d const &);
203
204}} // namespace lsst::sphgeom
205
206#endif // LSST_SPHGEOM_UNITVECTOR3D_H_
This file contains a class representing spherical coordinates.
table::Key< int > a
This file declares a class for representing vectors in ℝ³.
Angle represents an angle in radians.
Definition: Angle.h:43
LonLat represents a spherical coordinate (longitude/latitude angle) pair.
Definition: LonLat.h:48
Angle getLat() const
Definition: LonLat.h:90
NormalizedAngle getLon() const
Definition: LonLat.h:88
NormalizedAngle is an angle that lies in the range [0, 2π), with one exception - a NormalizedAngle ca...
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
Definition: UnitVector3d.h:55
static UnitVector3d Z()
Definition: UnitVector3d.h:101
double dot(Vector3d const &v) const
dot returns the inner product of this unit vector and v.
Definition: UnitVector3d.h:152
UnitVector3d operator-() const
The unary minus operator negates every component of this unit vector.
Definition: UnitVector3d.h:166
Vector3d robustCross(UnitVector3d const &v) const
a.robustCross(b) is (b + a).cross(b - a) - twice the cross product of a and b.
Definition: UnitVector3d.h:161
Vector3d cwiseProduct(Vector3d const &v) const
cwiseProduct returns the component-wise product of this unit vector and v.
Definition: UnitVector3d.h:187
Vector3d operator+(Vector3d const &v) const
The addition operator returns the sum of this unit vector and v.
Definition: UnitVector3d.h:179
static UnitVector3d fromNormalized(double x, double y, double z)
fromNormalized returns the unit vector with the given components, which are assumed to correspond to ...
Definition: UnitVector3d.h:89
UnitVector3d(double x, double y, double z)
Definition: UnitVector3d.h:116
static UnitVector3d orthogonalTo(NormalizedAngle const &a)
orthogonalTo returns the unit vector orthogonal to the meridian with the given longitude.
Definition: UnitVector3d.h:76
UnitVector3d(Vector3d const &v)
Definition: UnitVector3d.h:112
static UnitVector3d fromNormalized(Vector3d const &v)
fromNormalized returns the unit vector equal to v, which is assumed to be normalized.
Definition: UnitVector3d.h:82
UnitVector3d rotatedAround(UnitVector3d const &k, Angle a) const
rotatedAround returns a copy of this unit vector, rotated around the unit vector k by angle a accordi...
Definition: UnitVector3d.h:193
static UnitVector3d Y()
Definition: UnitVector3d.h:97
static UnitVector3d X()
Definition: UnitVector3d.h:93
Vector3d operator*(double s) const
The multiplication operator returns the component-wise product of this unit vector with scalar s.
Definition: UnitVector3d.h:172
Vector3d operator/(double s) const
The division operator returns the component-wise quotient of this unit vector with scalar s.
Definition: UnitVector3d.h:176
UnitVector3d()
The default constructor creates a unit vector equal to (1, 0, 0).
Definition: UnitVector3d.h:106
bool operator==(Vector3d const &v) const
Definition: UnitVector3d.h:136
Vector3d operator-(Vector3d const &v) const
The subtraction operator returns the difference between this unit vector and v.
Definition: UnitVector3d.h:183
static UnitVector3d orthogonalTo(Vector3d const &v)
orthogonalTo returns an arbitrary unit vector that is orthogonal to v.
Definition: UnitVector3d.cc:34
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this unit vector and v.
Definition: UnitVector3d.h:155
UnitVector3d(UnitVector3d const &v)=default
UnitVector3d(LonLat const &p)
This constructor creates the unit vector corresponding to the point p on the unit sphere.
Definition: UnitVector3d.h:123
bool operator!=(Vector3d const &v) const
Definition: UnitVector3d.h:137
double const * getData() const
getData returns a pointer to the 3 components of this unit vector.
Definition: UnitVector3d.h:140
double operator()(int i) const
The function call operator returns the i-th component of this vector.
Definition: UnitVector3d.h:143
static UnitVector3d northFrom(Vector3d const &v)
northFrom returns the unit vector orthogonal to v that points "north" from v.
Definition: UnitVector3d.cc:51
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
Vector3d cwiseProduct(Vector3d const &v) const
cwiseProduct returns the component-wise product of this vector and v.
Definition: Vector3d.h:150
Vector3d rotatedAround(UnitVector3d const &k, Angle a) const
rotatedAround returns a copy of this vector, rotated around the unit vector k by angle a according to...
Definition: Vector3d.cc:125
double dot(Vector3d const &v) const
dot returns the inner product of this vector and v.
Definition: Vector3d.h:73
double const * getData() const
data returns a pointer to the 3 components of this vector.
Definition: Vector3d.h:61
double x() const
Definition: Vector3d.h:66
double y() const
Definition: Vector3d.h:68
double normalize()
normalize scales this vector to have unit norm and returns its norm prior to scaling.
Definition: Vector3d.cc:41
double z() const
Definition: Vector3d.h:70
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this vector and v.
Definition: Vector3d.h:101
std::ostream & operator<<(std::ostream &, Angle const &)
Definition: Angle.cc:34
double sin(Angle const &a)
Definition: Angle.h:102
double cos(Angle const &a)
Definition: Angle.h:103
A base class for image defects.