LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
Matrix3d.h
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2014-2015 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
23#ifndef LSST_SPHGEOM_MATRIX3D_H_
24#define LSST_SPHGEOM_MATRIX3D_H_
25
28
29#include <iosfwd>
30
31#include "Vector3d.h"
32
33
34namespace lsst {
35namespace sphgeom {
36
38class Matrix3d {
39public:
42
45 Matrix3d(double m00, double m01, double m02,
46 double m10, double m11, double m12,
47 double m20, double m21, double m22)
48 {
49 _c[0] = Vector3d(m00, m10, m20);
50 _c[1] = Vector3d(m01, m11, m21);
51 _c[2] = Vector3d(m02, m12, m22);
52 }
53
56 explicit Matrix3d(Vector3d const & v) {
57 _c[0] = Vector3d(v.x(), 0.0, 0.0);
58 _c[1] = Vector3d(0.0, v.y(), 0.0);
59 _c[2] = Vector3d(0.0, 0.0, v.z());
60 }
61
63 explicit Matrix3d(double s) {
64 _c[0] = Vector3d(s, 0.0, 0.0);
65 _c[1] = Vector3d(0.0, s, 0.0);
66 _c[2] = Vector3d(0.0, 0.0, s);
67 }
68
69 bool operator==(Matrix3d const & m) const {
70 return _c[0] == m._c[0] &&
71 _c[1] == m._c[1] &&
72 _c[2] == m._c[2];
73 }
74
75 bool operator!=(Matrix3d const & m) const {
76 return _c[0] != m._c[0] ||
77 _c[1] != m._c[1] ||
78 _c[2] != m._c[2];
79 }
80
82 Vector3d getRow(int r) const {
83 return Vector3d(getColumn(0)(r), getColumn(1)(r), getColumn(2)(r));
84 }
85
87 Vector3d const & getColumn(int c) const { return _c[c]; }
88
91 double operator()(int r, int c) const { return getColumn(c)(r); }
92
94 double inner(Matrix3d const & m) const {
96 Vector3d sum = p._c[0] + p._c[1] + p._c[2];
97 return sum(0) + sum(1) + sum(2);
98 }
99
102 double getSquaredNorm() const { return inner(*this); }
103
105 double getNorm() const { return std::sqrt(getSquaredNorm()); }
106
109 Vector3d operator*(Vector3d const & v) const {
110 return Vector3d(_c[0] * v(0) + _c[1] * v(1) + _c[2] * v(2));
111 }
112
115 Matrix3d operator*(Matrix3d const & m) const {
116 Matrix3d r;
117 for (int i = 0; i < 3; ++i) { r._c[i] = this->operator*(m._c[i]); }
118 return r;
119 }
120
122 Matrix3d operator+(Matrix3d const & m) const {
123 Matrix3d r;
124 for (int i = 0; i < 3; ++i) { r._c[i] = _c[i] + m._c[i]; }
125 return r;
126 }
127
129 Matrix3d operator-(Matrix3d const & m) const {
130 Matrix3d r;
131 for (int i = 0; i < 3; ++i) { r._c[i] = _c[i] - m._c[i]; }
132 return r;
133 }
134
137 Matrix3d r;
138 for (int i = 0; i < 3; ++i) { r._c[i] = _c[i].cwiseProduct(m._c[i]); }
139 return r;
140 }
141
144 Matrix3d t;
145 t._c[0] = Vector3d(_c[0].x(), _c[1].x(), _c[2].x());
146 t._c[1] = Vector3d(_c[0].y(), _c[1].y(), _c[2].y());
147 t._c[2] = Vector3d(_c[0].z(), _c[1].z(), _c[2].z());
148 return t;
149 }
150
153 Matrix3d inv;
154 Matrix3d const & m = *this;
155 // Find the first column of Adj(m), the adjugate matrix of m.
156 Vector3d a0(m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2),
157 m(1, 2) * m(2, 0) - m(2, 2) * m(1, 0),
158 m(1, 0) * m(2, 1) - m(2, 0) * m(1, 1));
159 // Find 1.0/det(m), where the determinant of m is the dot product of
160 // the first row of m with the first column of Adj(m).
161 double rdet = 1.0 / (a0(0) * m(0,0) + a0(1) * m(0,1) + a0(2) * m(0,2));
162 // The inverse of m is Adj(m)/det(m); compute it column by column.
163 inv._c[0] = a0 * rdet;
164 inv._c[1] = Vector3d((m(0, 2) * m(2, 1) - m(2, 2) * m(0, 1)) * rdet,
165 (m(0, 0) * m(2, 2) - m(2, 0) * m(0, 2)) * rdet,
166 (m(0, 1) * m(2, 0) - m(2, 1) * m(0, 0)) * rdet);
167 inv._c[2] = Vector3d((m(0, 1) * m(1, 2) - m(1, 1) * m(0, 2)) * rdet,
168 (m(0, 2) * m(1, 0) - m(1, 2) * m(0, 0)) * rdet,
169 (m(0, 0) * m(1, 1) - m(1, 0) * m(0, 1)) * rdet);
170 return inv;
171 }
172
173private:
174 Vector3d _c[3];
175};
176
177std::ostream & operator<<(std::ostream &, Matrix3d const &);
178
179}} // namespace lsst::sphgeom
180
181#endif // LSST_SPHGEOM_MATRIX3D_H_
double x
double z
Definition: Match.cc:44
int y
Definition: SpanSet.cc:48
int m
Definition: SpanSet.cc:48
This file declares a class for representing vectors in ℝ³.
A 3x3 matrix with real entries stored in double precision.
Definition: Matrix3d.h:38
Vector3d getRow(int r) const
getRow returns the r-th matrix row. Bounds are not checked.
Definition: Matrix3d.h:82
Matrix3d inverse() const
inverse returns the inverse of this matrix.
Definition: Matrix3d.h:152
bool operator!=(Matrix3d const &m) const
Definition: Matrix3d.h:75
Matrix3d operator+(Matrix3d const &m) const
The addition operator returns the sum of this matrix and m.
Definition: Matrix3d.h:122
Vector3d const & getColumn(int c) const
getColumn returns the c-th matrix column. Bounds are not checked.
Definition: Matrix3d.h:87
Matrix3d(Vector3d const &v)
This constructor creates a diagonal matrix with diagonal components set to the components of v.
Definition: Matrix3d.h:56
bool operator==(Matrix3d const &m) const
Definition: Matrix3d.h:69
Matrix3d()
This constructor creates a zero matrix.
Definition: Matrix3d.h:41
Matrix3d(double s)
This constructor returns the identity matrix scaled by s.
Definition: Matrix3d.h:63
double operator()(int r, int c) const
The function call operator returns the scalar at row r and column c.
Definition: Matrix3d.h:91
double getNorm() const
getNorm returns the L2 (Frobenius) norm of this matrix.
Definition: Matrix3d.h:105
double inner(Matrix3d const &m) const
inner returns the Frobenius inner product of this matrix with m.
Definition: Matrix3d.h:94
Matrix3d(double m00, double m01, double m02, double m10, double m11, double m12, double m20, double m21, double m22)
This constructor creates a matrix from its components, where mij specifies the component for row i an...
Definition: Matrix3d.h:45
Vector3d operator*(Vector3d const &v) const
The multiplication operator returns the product of this matrix with vector v.
Definition: Matrix3d.h:109
Matrix3d transpose() const
transpose returns the transpose of this matrix.
Definition: Matrix3d.h:143
Matrix3d cwiseProduct(Matrix3d const &m) const
cwiseProduct returns the component-wise product of this matrix and m.
Definition: Matrix3d.h:136
Matrix3d operator-(Matrix3d const &m) const
The subtraction operator returns the difference between this matrix and m.
Definition: Matrix3d.h:129
double getSquaredNorm() const
getSquaredNorm returns the Frobenius inner product of this matrix with itself.
Definition: Matrix3d.h:102
Matrix3d operator*(Matrix3d const &m) const
The multiplication operator returns the product of this matrix with matrix m.
Definition: Matrix3d.h:115
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
Vector3d cwiseProduct(Vector3d const &v) const
cwiseProduct returns the component-wise product of this vector and v.
Definition: Vector3d.h:150
double x() const
Definition: Vector3d.h:66
double y() const
Definition: Vector3d.h:68
double z() const
Definition: Vector3d.h:70
std::ostream & operator<<(std::ostream &, Angle const &)
Definition: Angle.cc:34
A base class for image defects.
T sqrt(T... args)