LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
Vector3d.h
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2014-2015 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
23#ifndef LSST_SPHGEOM_VECTOR3D_H_
24#define LSST_SPHGEOM_VECTOR3D_H_
25
28
29#include <cmath>
30#include <iosfwd>
31#include <limits>
32#include <stdexcept>
33
34
35namespace lsst {
36namespace sphgeom {
37
38// Forward declarations
39class Angle;
40class UnitVector3d;
41
42
44class Vector3d {
45public:
47 Vector3d() { _v[0] = 0.0; _v[1] = 0.0; _v[2] = 0.0; }
48
50 Vector3d(double x, double y, double z) { _v[0] = x; _v[1] = y; _v[2] = z; }
51
52 bool operator==(Vector3d const & v) const {
53 return _v[0] == v._v[0] && _v[1] == v._v[1] && _v[2] == v._v[2];
54 }
55
56 bool operator!=(Vector3d const & v) const {
57 return _v[0] != v._v[0] || _v[1] != v._v[1] || _v[2] != v._v[2];
58 }
59
61 double const * getData() const { return _v; }
62
64 double operator()(int i) const { return _v[i]; }
65
66 double x() const { return _v[0]; }
67
68 double y() const { return _v[1]; }
69
70 double z() const { return _v[2]; }
71
73 double dot(Vector3d const & v) const {
74 return _v[0] * v._v[0] + _v[1] * v._v[1] + _v[2] * v._v[2];
75 }
76
78 double getSquaredNorm() const { return dot(*this); }
79
81 double getNorm() const {
82 return std::sqrt(getSquaredNorm());
83 }
84
86 bool isZero() const { return *this == Vector3d(); }
87
93 double normalize();
94
96 bool isNormalized() const {
97 return std::fabs(1.0 - getSquaredNorm()) <= 1e-15;
98 }
99
101 Vector3d cross(Vector3d const & v) const {
102 return Vector3d(_v[1] * v._v[2] - _v[2] * v._v[1],
103 _v[2] * v._v[0] - _v[0] * v._v[2],
104 _v[0] * v._v[1] - _v[1] * v._v[0]);
105 }
106
109 return Vector3d(-_v[0],
110 -_v[1],
111 -_v[2]);
112 }
113
116 Vector3d operator*(double s) const {
117 return Vector3d(_v[0] * s,
118 _v[1] * s,
119 _v[2] * s);
120 }
121
124 Vector3d operator/(double s) const {
125 return Vector3d(_v[0] / s,
126 _v[1] / s,
127 _v[2] / s);
128 }
129
131 Vector3d operator+(Vector3d const & v) const {
132 return Vector3d(_v[0] + v._v[0],
133 _v[1] + v._v[1],
134 _v[2] + v._v[2]);
135 }
136
138 Vector3d operator-(Vector3d const & v) const {
139 return Vector3d(_v[0] - v._v[0],
140 _v[1] - v._v[1],
141 _v[2] - v._v[2]);
142 }
143
144 Vector3d & operator*=(double s) { *this = *this * s; return *this; }
145 Vector3d & operator/=(double s) { *this = *this / s; return *this; }
146 Vector3d & operator+=(Vector3d const & v) { *this = *this + v; return *this; }
147 Vector3d & operator-=(Vector3d const & v) { *this = *this - v; return *this; }
148
150 Vector3d cwiseProduct(Vector3d const & v) const {
151 return Vector3d(_v[0] * v._v[0],
152 _v[1] * v._v[1],
153 _v[2] * v._v[2]);
154 }
155
158 Vector3d rotatedAround(UnitVector3d const & k, Angle a) const;
159
160private:
161 double _v[3];
162};
163
164
165inline Vector3d operator*(double s, Vector3d const & v) { return v * s; }
166
167std::ostream & operator<<(std::ostream &, Vector3d const &);
168
169}} // namespace lsst::sphgeom
170
171#endif // LSST_SPHGEOM_VECTOR3D_H_
table::Key< int > a
Angle represents an angle in radians.
Definition: Angle.h:43
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
Definition: UnitVector3d.h:55
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
Vector3d(double x, double y, double z)
This constructor creates a vector with the given components.
Definition: Vector3d.h:50
Vector3d & operator*=(double s)
Definition: Vector3d.h:144
Vector3d operator*(double s) const
The multiplication operator returns the component-wise product of this vector with scalar s.
Definition: Vector3d.h:116
Vector3d & operator+=(Vector3d const &v)
Definition: Vector3d.h:146
Vector3d cwiseProduct(Vector3d const &v) const
cwiseProduct returns the component-wise product of this vector and v.
Definition: Vector3d.h:150
Vector3d rotatedAround(UnitVector3d const &k, Angle a) const
rotatedAround returns a copy of this vector, rotated around the unit vector k by angle a according to...
Definition: Vector3d.cc:125
double dot(Vector3d const &v) const
dot returns the inner product of this vector and v.
Definition: Vector3d.h:73
bool operator==(Vector3d const &v) const
Definition: Vector3d.h:52
bool isNormalized() const
isNormalized returns true if this vectors norm is very close to 1.
Definition: Vector3d.h:96
double const * getData() const
data returns a pointer to the 3 components of this vector.
Definition: Vector3d.h:61
Vector3d & operator-=(Vector3d const &v)
Definition: Vector3d.h:147
Vector3d operator-() const
The unary minus operator negates every component of this vector.
Definition: Vector3d.h:108
double x() const
Definition: Vector3d.h:66
Vector3d()
The default constructor creates a zero vector.
Definition: Vector3d.h:47
double operator()(int i) const
The function call operator returns the i-th component of this vector.
Definition: Vector3d.h:64
Vector3d & operator/=(double s)
Definition: Vector3d.h:145
bool isZero() const
isZero returns true if all the components of this vector are zero.
Definition: Vector3d.h:86
double y() const
Definition: Vector3d.h:68
bool operator!=(Vector3d const &v) const
Definition: Vector3d.h:56
double getNorm() const
getNorm returns the L2 norm of this vector.
Definition: Vector3d.h:81
Vector3d operator-(Vector3d const &v) const
The subtraction operator returns the difference between this vector and v.
Definition: Vector3d.h:138
Vector3d operator/(double s) const
The division operator returns the component-wise quotient of this vector with scalar s.
Definition: Vector3d.h:124
double normalize()
normalize scales this vector to have unit norm and returns its norm prior to scaling.
Definition: Vector3d.cc:41
Vector3d operator+(Vector3d const &v) const
The addition operator returns the sum of this vector and v.
Definition: Vector3d.h:131
double z() const
Definition: Vector3d.h:70
double getSquaredNorm() const
getSquaredNorm returns the inner product of this vector with itself.
Definition: Vector3d.h:78
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this vector and v.
Definition: Vector3d.h:101
T fabs(T... args)
lsst::geom::Angle Angle
Definition: misc.h:33
std::ostream & operator<<(std::ostream &, Angle const &)
Definition: Angle.cc:34
Angle operator*(double a, Angle const &b)
Definition: Angle.h:98
A base class for image defects.
T sqrt(T... args)