LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
ScaledBasis2d.h
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * Developed for the LSST Data Management System.
4 * This product includes software developed by the LSST Project
5 * (https://www.lsst.org).
6 * See the COPYRIGHT file at the top-level directory of this distribution
7 * for details of code ownership.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <https://www.gnu.org/licenses/>.
21 */
22#ifndef LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
23#define LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
24
26
27namespace lsst { namespace geom { namespace polynomials {
28
29template <typename Basis>
30class Function2d;
31
42template <typename Nested>
44public:
45
48
51
53 using Workspace = typename Nested::Workspace;
54
56 using IndexRange = typename Nested::IndexRange;
57
59 explicit ScaledBasis2d(Nested const & nested, Scaling2d const & scaling) :
60 _nested(nested),
61 _scaling(scaling)
62 {}
63
78 _nested(order),
79 _scaling(makeUnitRangeScaling2d(box))
80 {}
81
83 ScaledBasis2d(ScaledBasis2d const &) = default;
84
87
90
93
95 Nested const & getNested() const noexcept { return _nested; }
96
98 Scaling2d const & getScaling() const noexcept { return _scaling; }
99
101 std::size_t getOrder() const { return getNested().getOrder(); }
102
104 std::size_t size() const { return getNested().size(); }
105
112 Scaled scaled(Scaling2d const & first) const {
113 return getNested().scaled(first.then(getScaling()));
114 }
115
117 int index(int x, int y) const { return getNested().index(x, y); }
118
139 IndexRange getIndices() const { return getNested().getIndices(); }
140
142 Workspace makeWorkspace() const { return getNested().makeWorkspace();}
143
162 template <typename Vector>
163 double sumWith(geom::Point2D const & point, Vector const & coefficients,
164 SumMode mode=SumMode::FAST) const {
165 return getNested().sumWith(getScaling().applyForward(point), coefficients, mode);
166 }
167
169 template <typename Vector>
170 double sumWith(geom::Point2D const & point, Vector const & coefficients,
171 Workspace & workspace, SumMode mode=SumMode::FAST) const {
172 return getNested().sumWith(getScaling().applyForward(point), coefficients, workspace, mode);
173 }
174
185 template <typename Vector>
186 void fill(geom::Point2D const & point, Vector && basis) const {
187 return getNested().fill(getScaling().applyForward(point),
188 std::forward<Vector>(basis));
189 }
190
192 template <typename Vector>
193 void fill(geom::Point2D const & point, Vector && basis, Workspace & workspace) const {
194 return getNested().fill(getScaling().applyForward(point),
195 std::forward<Vector>(basis),
196 workspace);
197 }
198
199private:
200 Nested _nested;
201 Scaling2d _scaling;
202};
203
204}}} // namespace lsst::geom::polynomials
205
206#endif // !LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
ndarray::Array< double const, 2, 2 > coefficients
double x
table::Key< double > scaling
int y
Definition: SpanSet.cc:48
table::Key< int > nested
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
A 2-d function defined by a series expansion and its coefficients.
Definition: Function2d.h:42
A 2-d basis that transforms all input points before evaluating nested basis.
Definition: ScaledBasis2d.h:43
typename Nested::Workspace Workspace
The type returned by makeWorkspace().
Definition: ScaledBasis2d.h:53
Scaling2d const & getScaling() const noexcept
Return the scaling transform.
Definition: ScaledBasis2d.h:98
double sumWith(geom::Point2D const &point, Vector const &coefficients, Workspace &workspace, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients (external workspace version).
void fill(geom::Point2D const &point, Vector &&basis, Workspace &workspace) const
Evaluate the basis at a given point (external workspace version).
ScaledBasis2d(ScaledBasis2d const &)=default
Default copy constructor.
ScaledBasis2d(Nested const &nested, Scaling2d const &scaling)
Construct a scaled basis from a nested basis and a scaling transform.
Definition: ScaledBasis2d.h:59
Nested const & getNested() const noexcept
Return the nested basis.
Definition: ScaledBasis2d.h:95
ScaledBasis2d(std::size_t order, Box2D const &box)
Construct a basis that remaps the given box to [-1, 1]x[-1, 1] before evaluating the nested polynomia...
Definition: ScaledBasis2d.h:77
IndexRange getIndices() const
Return a range of iterators that dereference to Index2d.
ScaledBasis2d(ScaledBasis2d &&)=default
Default move constructor.
Workspace makeWorkspace() const
Allocate a workspace that can be passed to sumWith() and fill() to avoid repeated memory allocations.
ScaledBasis2d & operator=(ScaledBasis2d &&)=default
Default move assignment.
std::size_t size() const
Return the number of elements in the basis.
Scaled scaled(Scaling2d const &first) const
Return a scaled basis that delegates to a copy of this.
void fill(geom::Point2D const &point, Vector &&basis) const
Evaluate the basis at a given point.
ScaledBasis2d & operator=(ScaledBasis2d const &)=default
Default copy assignment.
std::size_t getOrder() const
Return the order of the basis.
double sumWith(geom::Point2D const &point, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
int index(int x, int y) const
Return the flattened index of the basis function with the given x and y orders.
typename Nested::IndexRange IndexRange
The type returned by getIndices().
Definition: ScaledBasis2d.h:56
A 2-d separable affine transform that can be used to map one interval to another.
Definition: Scaling2d.h:48
Scaling2d makeUnitRangeScaling2d(geom::Box2D const &box)
Return a Scaling1d that maps the given box to [-1, 1]x[-1, 1].
Definition: Scaling2d.h:112
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
@ FAST
Summation using regular floating-point addition.
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
A base class for image defects.
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
table::Key< int > order