LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
SdssShape.cc
Go to the documentation of this file.
1// -*- lsst-c++ -*-
2/*
3 * LSST Data Management System
4 * Copyright 2008-2016 AURA/LSST.
5 *
6 * This product includes software developed by the
7 * LSST Project (http://www.lsst.org/).
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the LSST License Statement and
20 * the GNU General Public License along with this program. If not,
21 * see <https://www.lsstcorp.org/LegalNotices/>.
22 */
23
24#include <cmath>
25#include <tuple>
26
27#include "boost/format.hpp"
28#include "Eigen/LU"
29#include "lsst/geom/Angle.h"
30#include "lsst/geom/Box.h"
32#include "lsst/afw/image.h"
38
39namespace lsst {
40namespace meas {
41namespace base {
42namespace {
43FlagDefinitionList flagDefinitions;
44} // namespace
45
46FlagDefinition const SdssShapeAlgorithm::FAILURE = flagDefinitions.addFailureFlag();
47FlagDefinition const SdssShapeAlgorithm::UNWEIGHTED_BAD =
48 flagDefinitions.add("flag_unweightedBad", "Both weighted and unweighted moments were invalid");
49FlagDefinition const SdssShapeAlgorithm::UNWEIGHTED = flagDefinitions.add(
50 "flag_unweighted", "Weighted moments converged to an invalid value; using unweighted moments");
51FlagDefinition const SdssShapeAlgorithm::SHIFT =
52 flagDefinitions.add("flag_shift", "centroid shifted by more than the maximum allowed amount");
53FlagDefinition const SdssShapeAlgorithm::MAXITER =
54 flagDefinitions.add("flag_maxIter", "Too many iterations in adaptive moments");
55FlagDefinition const SdssShapeAlgorithm::PSF_SHAPE_BAD =
56 flagDefinitions.add("flag_psf", "Failure in measuring PSF model shape");
57
59
60namespace { // anonymous
61
62typedef Eigen::Matrix<double, 4, 4, Eigen::DontAlign> Matrix4d;
63
64/*****************************************************************************/
65/*
66 * Error analysis, courtesy of David Johnston, University of Chicago
67 */
68/*
69 * This function takes the 4 Gaussian parameters A, sigmaXXW and the
70 * sky variance and fills in the Fisher matrix from the least squares fit.
71 *
72 * Following "Numerical Recipes in C" section 15.5, it ignores the 2nd
73 * derivative parts and so the fisher matrix is just a function of these
74 * best fit model parameters. The components are calculated analytically.
75 */
76Matrix4d calc_fisher(SdssShapeResult const &shape, // the Shape that we want the the Fisher matrix for
77 float bkgd_var // background variance level for object
78 ) {
79 float const A = shape.instFlux; // amplitude; will be converted to instFlux later
80 float const sigma11W = shape.xx;
81 float const sigma12W = shape.xy;
82 float const sigma22W = shape.yy;
83
84 double const D = sigma11W * sigma22W - sigma12W * sigma12W;
85
87 throw LSST_EXCEPT(pex::exceptions::DomainError, "Determinant is too small calculating Fisher matrix");
88 }
89 /*
90 * a normalization factor
91 */
92 if (bkgd_var <= 0.0) {
94 (boost::format("Background variance must be positive (saw %g)") % bkgd_var).str());
95 }
96 double const F = geom::PI * sqrt(D) / bkgd_var;
97 /*
98 * Calculate the 10 independent elements of the 4x4 Fisher matrix
99 */
100 Matrix4d fisher;
101
102 double fac = F * A / (4.0 * D);
103 fisher(0, 0) = F;
104 fisher(0, 1) = fac * sigma22W;
105 fisher(1, 0) = fisher(0, 1);
106 fisher(0, 2) = fac * sigma11W;
107 fisher(2, 0) = fisher(0, 2);
108 fisher(0, 3) = -fac * 2 * sigma12W;
109 fisher(3, 0) = fisher(0, 3);
110
111 fac = 3.0 * F * A * A / (16.0 * D * D);
112 fisher(1, 1) = fac * sigma22W * sigma22W;
113 fisher(2, 2) = fac * sigma11W * sigma11W;
114 fisher(3, 3) = fac * 4.0 * (sigma12W * sigma12W + D / 3.0);
115
116 fisher(1, 2) = fisher(3, 3) / 4.0;
117 fisher(2, 1) = fisher(1, 2);
118 fisher(1, 3) = fac * (-2 * sigma22W * sigma12W);
119 fisher(3, 1) = fisher(1, 3);
120 fisher(2, 3) = fac * (-2 * sigma11W * sigma12W);
121 fisher(3, 2) = fisher(2, 3);
122
123 return fisher;
124}
125//
126// Here's a class to allow us to get the Image and variance from an Image or MaskedImage
127//
128template <typename ImageT> // general case
129struct ImageAdaptor {
130 typedef ImageT Image;
131
132 static bool const hasVariance = false;
133
134 Image const &getImage(ImageT const &image) const { return image; }
135
136 double getVariance(ImageT const &, int, int) { return std::numeric_limits<double>::quiet_NaN(); }
137};
138
139template <typename T> // specialise to a MaskedImage
140struct ImageAdaptor<afw::image::MaskedImage<T> > {
141 typedef typename afw::image::MaskedImage<T>::Image Image;
142
143 static bool const hasVariance = true;
144
145 Image const &getImage(afw::image::MaskedImage<T> const &mimage) const { return *mimage.getImage(); }
146
147 double getVariance(afw::image::MaskedImage<T> const &mimage, int ix, int iy) {
148 return mimage.at(ix, iy).variance();
149 }
150};
151
153std::tuple<std::pair<bool, double>, double, double, double> getWeights(double sigma11, double sigma12,
154 double sigma22) {
155 double const NaN = std::numeric_limits<double>::quiet_NaN();
156 if (std::isnan(sigma11) || std::isnan(sigma12) || std::isnan(sigma22)) {
157 return std::make_tuple(std::make_pair(false, NaN), NaN, NaN, NaN);
158 }
159 double const det = sigma11 * sigma22 - sigma12 * sigma12; // determinant of sigmaXX matrix
160 if (std::isnan(det) || det < std::numeric_limits<float>::epsilon()) { // a suitably small number
161 return std::make_tuple(std::make_pair(false, det), NaN, NaN, NaN);
162 }
163 return std::make_tuple(std::make_pair(true, det), sigma22 / det, -sigma12 / det, sigma11 / det);
164}
165
167bool shouldInterp(double sigma11, double sigma22, double det) {
168 float const xinterp = 0.25; // I.e. 0.5*0.5
169 return (sigma11 < xinterp || sigma22 < xinterp || det < xinterp * xinterp);
170}
171
172// Decide on the bounding box for the region to examine while calculating the adaptive moments
173// This routine will work in either LOCAL or PARENT coordinates (but of course which you pass
174// determine which you will get back).
175geom::Box2I computeAdaptiveMomentsBBox(geom::Box2I const &bbox, // full image bbox
176 geom::Point2D const &center, // centre of object
177 double sigma11_w, // quadratic moments of the
178 double, // weighting function
179 double sigma22_w, // xx, xy, and yy
180 double maxRadius = 1000 // Maximum radius of area to use
181 ) {
182 double radius = std::min(4 * std::sqrt(std::max(sigma11_w, sigma22_w)), maxRadius);
184 geom::Box2I result(geom::Box2D(center - offset, center + offset));
185 result.clip(bbox);
186 return result;
187}
188
189/*****************************************************************************/
190/*
191 * Calculate weighted moments of an object up to 2nd order
192 */
193template <typename ImageT>
194static void calcmom(ImageT const &image, // the image data
195 float xcen, float ycen, // centre of object
196 const geom::BoxI &bbox, // bounding box to consider
197 float bkgd, // data's background level
198 bool interpflag, // interpolate within pixels?
199 double w11, double w12, double w22, // weights
200 double &psum) { // sum w*I
201
202 float tmod, ymod;
203 float X, Y; // sub-pixel interpolated [xy]
204 float weight;
205 float tmp;
206 double sum, sumx, sumy, sumxx, sumyy, sumxy, sums4;
207
208 if (w11 < 0 || w11 > 1e6 || fabs(w12) > 1E6 || w22 < 0 || w22 > 1e6) {
209 throw LSST_EXCEPT(pex::exceptions::InvalidParameterError, "Invalid weight parameter(s)");
210 }
211
212 sum = sumx = sumy = sumxx = sumxy = sumyy = sums4 = 0;
213
214 int const ix0 = bbox.getMinX(); // corners of the box being analyzed
215 int const ix1 = bbox.getMaxX();
216 int const iy0 = bbox.getMinY(); // corners of the box being analyzed
217 int const iy1 = bbox.getMaxY();
218
219 if (ix0 < 0 || ix1 >= image.getWidth() || iy0 < 0 || iy1 >= image.getHeight()) {
220 throw LSST_EXCEPT(pex::exceptions::LengthError, "Invalid image dimensions");
221 }
222
223 for (int i = iy0; i <= iy1; ++i) {
224 typename ImageT::x_iterator ptr = image.x_at(ix0, i);
225 float const y = i - ycen;
226 float const y2 = y * y;
227 float const yl = y - 0.375;
228 float const yh = y + 0.375;
229 for (int j = ix0; j <= ix1; ++j, ++ptr) {
230 float x = j - xcen;
231 if (interpflag) {
232 float const xl = x - 0.375;
233 float const xh = x + 0.375;
234
235 float expon = xl * xl * w11 + yl * yl * w22 + 2.0 * xl * yl * w12;
236 tmp = xh * xh * w11 + yh * yh * w22 + 2.0 * xh * yh * w12;
237 expon = (expon > tmp) ? expon : tmp;
238 tmp = xl * xl * w11 + yh * yh * w22 + 2.0 * xl * yh * w12;
239 expon = (expon > tmp) ? expon : tmp;
240 tmp = xh * xh * w11 + yl * yl * w22 + 2.0 * xh * yl * w12;
241 expon = (expon > tmp) ? expon : tmp;
242
243 if (expon <= 9.0) {
244 tmod = *ptr - bkgd;
245 for (Y = yl; Y <= yh; Y += 0.25) {
246 double const interpY2 = Y * Y;
247 for (X = xl; X <= xh; X += 0.25) {
248 double const interpX2 = X * X;
249 double const interpXy = X * Y;
250 expon = interpX2 * w11 + 2 * interpXy * w12 + interpY2 * w22;
251 weight = std::exp(-0.5 * expon);
252
253 ymod = tmod * weight;
254 sum += ymod;
255 }
256 }
257 }
258 } else {
259 float x2 = x * x;
260 float xy = x * y;
261 float expon = x2 * w11 + 2 * xy * w12 + y2 * w22;
262
263 if (expon <= 14.0) {
264 weight = std::exp(-0.5 * expon);
265 tmod = *ptr - bkgd;
266 ymod = tmod * weight;
267 sum += ymod;
268 }
269 }
270 }
271 }
272
273 psum = sum;
274
275}
276
277template <typename ImageT>
278static int calcmom(ImageT const &image, // the image data
279 float xcen, float ycen, // centre of object
280 const geom::BoxI& bbox, // bounding box to consider
281 float bkgd, // data's background level
282 bool interpflag, // interpolate within pixels?
283 double w11, double w12, double w22, // weights
284 double &pI0, // amplitude of fit (if !NULL)
285 double &psum, // sum w*I (if !NULL)
286 double &psumx, double &psumy, // sum [xy]*w*I (if !instFluxOnly)
287 double &psumxx, double &psumxy, double &psumyy, // sum [xy]^2*w*I (if !instFluxOnly)
288 double &psums4, // sum w*I*weight^2 (if !instFluxOnly && !NULL)
289 bool negative = false) {
290 float tmod, ymod;
291 float X, Y; // sub-pixel interpolated [xy]
292 float weight;
293 float tmp;
294 double sum, sumx, sumy, sumxx, sumyy, sumxy, sums4;
295
296 if (w11 < 0 || w11 > 1e6 || fabs(w12) > 1E6 || w22 < 0 || w22 > 1e6) {
297 throw LSST_EXCEPT(pex::exceptions::InvalidParameterError, "Invalid weight parameter(s)");
298 }
299
300 sum = sumx = sumy = sumxx = sumxy = sumyy = sums4 = 0;
301
302 int const ix0 = bbox.getMinX(); // corners of the box being analyzed
303 int const ix1 = bbox.getMaxX();
304 int const iy0 = bbox.getMinY(); // corners of the box being analyzed
305 int const iy1 = bbox.getMaxY();
306
307 if (ix0 < 0 || ix1 >= image.getWidth() || iy0 < 0 || iy1 >= image.getHeight()) {
308 throw LSST_EXCEPT(pex::exceptions::LengthError, "Invalid image dimensions");
309 }
310
311 for (int i = iy0; i <= iy1; ++i) {
312 typename ImageT::x_iterator ptr = image.x_at(ix0, i);
313 float const y = i - ycen;
314 float const y2 = y * y;
315 float const yl = y - 0.375;
316 float const yh = y + 0.375;
317 for (int j = ix0; j <= ix1; ++j, ++ptr) {
318 float x = j - xcen;
319 if (interpflag) {
320 float const xl = x - 0.375;
321 float const xh = x + 0.375;
322
323 float expon = xl * xl * w11 + yl * yl * w22 + 2.0 * xl * yl * w12;
324 tmp = xh * xh * w11 + yh * yh * w22 + 2.0 * xh * yh * w12;
325 expon = (expon > tmp) ? expon : tmp;
326 tmp = xl * xl * w11 + yh * yh * w22 + 2.0 * xl * yh * w12;
327 expon = (expon > tmp) ? expon : tmp;
328 tmp = xh * xh * w11 + yl * yl * w22 + 2.0 * xh * yl * w12;
329 expon = (expon > tmp) ? expon : tmp;
330
331 if (expon <= 9.0) {
332 tmod = *ptr - bkgd;
333 for (Y = yl; Y <= yh; Y += 0.25) {
334 double const interpY2 = Y * Y;
335 for (X = xl; X <= xh; X += 0.25) {
336 double const interpX2 = X * X;
337 double const interpXy = X * Y;
338 expon = interpX2 * w11 + 2 * interpXy * w12 + interpY2 * w22;
339 weight = std::exp(-0.5 * expon);
340
341 ymod = tmod * weight;
342 sum += ymod;
343 sumx += ymod * (X + xcen);
344 sumy += ymod * (Y + ycen);
345 sumxx += interpX2 * ymod;
346 sumxy += interpXy * ymod;
347 sumyy += interpY2 * ymod;
348 sums4 += expon * expon * ymod;
349 }
350 }
351 }
352 } else {
353 float x2 = x * x;
354 float xy = x * y;
355 float expon = x2 * w11 + 2 * xy * w12 + y2 * w22;
356
357 if (expon <= 14.0) {
358 weight = std::exp(-0.5 * expon);
359 tmod = *ptr - bkgd;
360 ymod = tmod * weight;
361 sum += ymod;
362 sumx += ymod * j;
363 sumy += ymod * i;
364 sumxx += x2 * ymod;
365 sumxy += xy * ymod;
366 sumyy += y2 * ymod;
367 sums4 += expon * expon * ymod;
368 }
369 }
370 }
371 }
372
373
374 std::tuple<std::pair<bool, double>, double, double, double> const weights = getWeights(w11, w12, w22);
375 double const detW = std::get<1>(weights) * std::get<3>(weights) - std::pow(std::get<2>(weights), 2);
376 pI0 = sum / (geom::PI * sqrt(detW));
377
378
379 psum = sum;
380
381 psumx = sumx;
382 psumy = sumy;
383 psumxx = sumxx;
384 psumxy = sumxy;
385 psumyy = sumyy;
386
387 psums4 = sums4;
388
389 if (negative) {
390 return (sum < 0 && sumxx < 0 && sumyy < 0) ? 0 : -1;
391 } else {
392 return (sum > 0 && sumxx > 0 && sumyy > 0) ? 0 : -1;
393 }
394}
395
396/*
397 * Workhorse for adaptive moments
398 *
399 * All inputs are expected to be in LOCAL image coordinates
400 */
401template <typename ImageT>
402bool getAdaptiveMoments(ImageT const &mimage, double bkgd, double xcen, double ycen, double shiftmax,
403 SdssShapeResult *shape, int maxIter, float tol1, float tol2, bool negative) {
404 double I0 = 0; // amplitude of best-fit Gaussian
405 double sum; // sum of intensity*weight
406 double sumx, sumy; // sum ((int)[xy])*intensity*weight
407 double sumxx, sumxy, sumyy; // sum {x^2,xy,y^2}*intensity*weight
408 double sums4; // sum intensity*weight*exponent^2
409 float const xcen0 = xcen; // initial centre
410 float const ycen0 = ycen; // of object
411
412 double sigma11W = 1.5; // quadratic moments of the
413 double sigma12W = 0.0; // weighting fcn;
414 double sigma22W = 1.5; // xx, xy, and yy
415
416 double w11 = -1, w12 = -1, w22 = -1; // current weights for moments; always set when iter == 0
417 float e1_old = 1e6, e2_old = 1e6; // old values of shape parameters e1 and e2
418 float sigma11_ow_old = 1e6; // previous version of sigma11_ow
419
420 typename ImageAdaptor<ImageT>::Image const &image = ImageAdaptor<ImageT>().getImage(mimage);
421
422 if (std::isnan(xcen) || std::isnan(ycen)) {
423 // Can't do anything
424 shape->flags[SdssShapeAlgorithm::UNWEIGHTED_BAD.number] = true;
425 return false;
426 }
427
428 bool interpflag = false; // interpolate finer than a pixel?
430 int iter = 0; // iteration number
431 for (; iter < maxIter; iter++) {
432 bbox = computeAdaptiveMomentsBBox(image.getBBox(afw::image::LOCAL), geom::Point2D(xcen, ycen),
433 sigma11W, sigma12W, sigma22W);
435 getWeights(sigma11W, sigma12W, sigma22W);
436 if (!std::get<0>(weights).first) {
437 shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number] = true;
438 break;
439 }
440
441 double const detW = std::get<0>(weights).second;
442
443 if( sigma11W * sigma22W < sigma12W * sigma12W - std::numeric_limits<float>::epsilon()) return false;
444
445 {
446 const double ow11 = w11; // old
447 const double ow12 = w12; // values
448 const double ow22 = w22; // of w11, w12, w22
449
450 w11 = std::get<1>(weights);
451 w12 = std::get<2>(weights);
452 w22 = std::get<3>(weights);
453
454 if (shouldInterp(sigma11W, sigma22W, detW)) {
455 if (!interpflag) {
456 interpflag = true; // N.b.: stays set for this object
457 if (iter > 0) {
458 sigma11_ow_old = 1.e6; // force at least one more iteration
459 w11 = ow11;
460 w12 = ow12;
461 w22 = ow22;
462 iter--; // we didn't update wXX
463 }
464 }
465 }
466 }
467 if (calcmom(image, xcen, ycen, bbox, bkgd, interpflag, w11, w12, w22, I0, sum, sumx, sumy,
468 sumxx, sumxy, sumyy, sums4, negative) < 0) {
469 shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number] = true;
470 break;
471 }
472
473 shape->x = sumx / sum; // update centroid. N.b. we're not setting errors here
474 shape->y = sumy / sum;
475
476 if (fabs(shape->x - xcen0) > shiftmax || fabs(shape->y - ycen0) > shiftmax) {
477 shape->flags[SdssShapeAlgorithm::SHIFT.number] = true;
478 }
479 /*
480 * OK, we have the centre. Proceed to find the second moments.
481 */
482 float const sigma11_ow = sumxx / sum; // quadratic moments of
483 float const sigma22_ow = sumyy / sum; // weight*object
484 float const sigma12_ow = sumxy / sum; // xx, xy, and yy
485
486 if (sigma11_ow <= 0 || sigma22_ow <= 0) {
487 shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number] = true;
488 break;
489 }
490
491 float const d = sigma11_ow + sigma22_ow; // current values of shape parameters
492 float const e1 = (sigma11_ow - sigma22_ow) / d;
493 float const e2 = 2.0 * sigma12_ow / d;
494 /*
495 * Did we converge?
496 */
497 if (iter > 0 && fabs(e1 - e1_old) < tol1 && fabs(e2 - e2_old) < tol1 &&
498 fabs(sigma11_ow / sigma11_ow_old - 1.0) < tol2) {
499 break; // yes; we converged
500 }
501
502 e1_old = e1;
503 e2_old = e2;
504 sigma11_ow_old = sigma11_ow;
505 /*
506 * Didn't converge, calculate new values for weighting function
507 *
508 * The product of two Gaussians is a Gaussian:
509 * <x^2 exp(-a x^2 - 2bxy - cy^2) exp(-Ax^2 - 2Bxy - Cy^2)> =
510 * <x^2 exp(-(a + A) x^2 - 2(b + B)xy - (c + C)y^2)>
511 * i.e. the inverses of the covariances matrices add.
512 *
513 * We know sigmaXX_ow and sigmaXXW, the covariances of the weighted object
514 * and of the weights themselves. We can estimate the object's covariance as
515 * sigmaXX_ow^-1 - sigmaXXW^-1
516 * and, as we want to find a set of weights with the _same_ covariance as the
517 * object we take this to be the an estimate of our correct weights.
518 *
519 * N.b. This assumes that the object is roughly Gaussian.
520 * Consider the object:
521 * O == delta(x + p) + delta(x - p)
522 * the covariance of the weighted object is equal to that of the unweighted
523 * object, and this prescription fails badly. If we detect this, we set
524 * the UNWEIGHTED flag, and calculate the UNweighted moments
525 * instead.
526 */
527 {
528 float n11, n12, n22; // elements of inverse of next guess at weighting function
529 float ow11, ow12, ow22; // elements of inverse of sigmaXX_ow
530
532 getWeights(sigma11_ow, sigma12_ow, sigma22_ow);
533 if (!std::get<0>(weights).first) {
534 shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number] = true;
535 break;
536 }
537
538 ow11 = std::get<1>(weights);
539 ow12 = std::get<2>(weights);
540 ow22 = std::get<3>(weights);
541
542 n11 = ow11 - w11;
543 n12 = ow12 - w12;
544 n22 = ow22 - w22;
545
546 weights = getWeights(n11, n12, n22);
547 if (!std::get<0>(weights).first) {
548 // product-of-Gaussians assumption failed
549 shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number] = true;
550 break;
551 }
552
553 sigma11W = std::get<1>(weights);
554 sigma12W = std::get<2>(weights);
555 sigma22W = std::get<3>(weights);
556 }
557
558 if (sigma11W <= 0 || sigma22W <= 0) {
559 shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number] = true;
560 break;
561 }
562 }
563
564 if (iter == maxIter) {
565 shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number] = true;
566 shape->flags[SdssShapeAlgorithm::MAXITER.number] = true;
567 }
568
569 if (sumxx + sumyy == 0.0) {
570 shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number] = true;
571 }
572 /*
573 * Problems; try calculating the un-weighted moments
574 */
575 if (shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number]) {
576 w11 = w22 = w12 = 0;
577 double ignored;
578 if (calcmom(image, xcen, ycen, bbox, bkgd, interpflag, w11, w12, w22, I0, sum, sumx, sumy,
579 sumxx, sumxy, sumyy, ignored, negative) < 0 ||
580 (!negative && sum <= 0) || (negative && sum >= 0)) {
581 shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number] = false;
582 shape->flags[SdssShapeAlgorithm::UNWEIGHTED_BAD.number] = true;
583
584 if (sum > 0) {
585 shape->xx = 1 / 12.0; // a single pixel
586 shape->xy = 0.0;
587 shape->yy = 1 / 12.0;
588 }
589
590 return false;
591 }
592
593 sigma11W = sumxx / sum; // estimate of object moments
594 sigma12W = sumxy / sum; // usually, object == weight
595 sigma22W = sumyy / sum; // at this point
596 }
597
598 shape->instFlux = I0;
599 shape->xx = sigma11W;
600 shape->xy = sigma12W;
601 shape->yy = sigma22W;
602
603 if (shape->xx + shape->yy != 0.0) {
604 int const ix = afw::image::positionToIndex(xcen);
605 int const iy = afw::image::positionToIndex(ycen);
606
607 if (ix >= 0 && ix < mimage.getWidth() && iy >= 0 && iy < mimage.getHeight()) {
608 float const bkgd_var = ImageAdaptor<ImageT>().getVariance(
609 mimage, ix, iy); // XXX Overestimate as it includes object
610
611 if (bkgd_var > 0.0) { // NaN is not > 0.0
612 if (!(shape->flags[SdssShapeAlgorithm::UNWEIGHTED.number])) {
613 Matrix4d fisher = calc_fisher(*shape, bkgd_var); // Fisher matrix
614 Matrix4d cov = fisher.inverse();
615 // convention is to order moments (xx, yy, xy)
616 shape->instFluxErr = std::sqrt(cov(0, 0));
617 shape->xxErr = std::sqrt(cov(1, 1));
618 shape->yyErr = std::sqrt(cov(2, 2));
619 shape->xyErr = std::sqrt(cov(3, 3));
620 shape->instFlux_xx_Cov = cov(0, 1);
621 shape->instFlux_yy_Cov = cov(0, 2);
622 shape->instFlux_xy_Cov = cov(0, 3);
623 shape->xx_yy_Cov = cov(1, 2);
624 shape->xx_xy_Cov = cov(1, 3);
625 shape->yy_xy_Cov = cov(2, 3);
626 }
627 }
628 }
629 }
630
631 return true;
632}
633
634} // namespace
635
637 : instFlux_xx_Cov(std::numeric_limits<ErrElement>::quiet_NaN()),
638 instFlux_yy_Cov(std::numeric_limits<ErrElement>::quiet_NaN()),
639 instFlux_xy_Cov(std::numeric_limits<ErrElement>::quiet_NaN()) {}
640
642 bool doMeasurePsf) {
644 r._shapeResult =
645 ShapeResultKey::addFields(schema, name, "elliptical Gaussian adaptive moments", SIGMA_ONLY);
646 r._centroidResult = CentroidResultKey::addFields(schema, name, "elliptical Gaussian adaptive moments",
648 r._instFluxResult = FluxResultKey::addFields(schema, name, "elliptical Gaussian adaptive moments");
649
650 // Only include PSF shape fields if doMeasurePsf = True
651 if (doMeasurePsf) {
652 r._includePsf = true;
653 r._psfShapeResult = afw::table::QuadrupoleKey::addFields(
654 schema, schema.join(name, "psf"), "adaptive moments of the PSF model at the object position");
655 } else {
656 r._includePsf = false;
657 }
658
659 r._instFlux_xx_Cov =
660 schema.addField<ErrElement>(schema.join(name, "instFlux", "xx", "Cov"),
661 (boost::format("uncertainty covariance between %s and %s") %
662 schema.join(name, "instFlux") % schema.join(name, "xx"))
663 .str(),
664 "count*pixel^2");
665 r._instFlux_yy_Cov =
666 schema.addField<ErrElement>(schema.join(name, "instFlux", "yy", "Cov"),
667 (boost::format("uncertainty covariance between %s and %s") %
668 schema.join(name, "instFlux") % schema.join(name, "yy"))
669 .str(),
670 "count*pixel^2");
671 r._instFlux_xy_Cov =
672 schema.addField<ErrElement>(schema.join(name, "instFlux", "xy", "Cov"),
673 (boost::format("uncertainty covariance between %s and %s") %
674 schema.join(name, "instFlux") % schema.join(name, "xy"))
675 .str(),
676 "count*pixel^2");
677
678 // Skip the psf flag if not recording the PSF shape.
679 if (r._includePsf) {
681 } else {
684 }
685 return r;
686}
687
689 : _shapeResult(s),
690 _centroidResult(s),
691 _instFluxResult(s),
692 _instFlux_xx_Cov(s["instFlux"]["xx"]["Cov"]),
693 _instFlux_yy_Cov(s["instFlux"]["yy"]["Cov"]),
694 _instFlux_xy_Cov(s["instFlux"]["xy"]["Cov"]) {
695 // The input SubSchema may optionally provide for a PSF.
696 try {
697 _psfShapeResult = afw::table::QuadrupoleKey(s["psf"]);
699 _includePsf = true;
700 } catch (pex::exceptions::NotFoundError &e) {
701 _flagHandler =
703 _includePsf = false;
704 }
705}
706
709 static_cast<ShapeResult &>(result) = record.get(_shapeResult);
710 static_cast<CentroidResult &>(result) = record.get(_centroidResult);
711 static_cast<FluxResult &>(result) = record.get(_instFluxResult);
712 result.instFlux_xx_Cov = record.get(_instFlux_xx_Cov);
713 result.instFlux_yy_Cov = record.get(_instFlux_yy_Cov);
714 result.instFlux_xy_Cov = record.get(_instFlux_xy_Cov);
715 for (size_t n = 0; n < SdssShapeAlgorithm::N_FLAGS; ++n) {
716 if (n == SdssShapeAlgorithm::PSF_SHAPE_BAD.number && !_includePsf) continue;
717 result.flags[n] = _flagHandler.getValue(record, n);
718 }
719 return result;
720}
721
723 return record.get(_psfShapeResult);
724}
725
727 record.set(_shapeResult, value);
728 record.set(_centroidResult, value);
729 record.set(_instFluxResult, value);
730 record.set(_instFlux_xx_Cov, value.instFlux_xx_Cov);
731 record.set(_instFlux_yy_Cov, value.instFlux_yy_Cov);
732 record.set(_instFlux_xy_Cov, value.instFlux_xy_Cov);
733 for (size_t n = 0; n < SdssShapeAlgorithm::N_FLAGS; ++n) {
734 if (n == SdssShapeAlgorithm::PSF_SHAPE_BAD.number && !_includePsf) continue;
735 _flagHandler.setValue(record, n, value.flags[n]);
736 }
737}
738
740 afw::geom::ellipses::Quadrupole const &value) const {
741 record.set(_psfShapeResult, value);
742}
743
745 return _shapeResult == other._shapeResult && _centroidResult == other._centroidResult &&
746 _instFluxResult == other._instFluxResult && _psfShapeResult == other._psfShapeResult &&
747 _instFlux_xx_Cov == other._instFlux_xx_Cov && _instFlux_yy_Cov == other._instFlux_yy_Cov &&
748 _instFlux_xy_Cov == other._instFlux_xy_Cov;
749 // don't bother with flags - if we've gotten this far, it's basically impossible the flags don't match
750}
751
753 return _shapeResult.isValid() && _centroidResult.isValid() && _instFluxResult.isValid() &&
754 _psfShapeResult.isValid() && _instFlux_xx_Cov.isValid() && _instFlux_yy_Cov.isValid() &&
755 _instFlux_xy_Cov.isValid();
756 // don't bother with flags - if we've gotten this far, it's basically impossible the flags are invalid
757}
758
761 : _ctrl(ctrl),
762 _resultKey(ResultKey::addFields(schema, name, ctrl.doMeasurePsf)),
763 _centroidExtractor(schema, name) {}
764
765template <typename ImageT>
767 bool negative, Control const &control) {
768 double xcen = center.getX(); // object's column position
769 double ycen = center.getY(); // object's row position
770
771 xcen -= image.getX0(); // work in image Pixel coordinates
772 ycen -= image.getY0();
773
774 float shiftmax = control.maxShift; // Max allowed centroid shift
775 if (shiftmax < 2) {
776 shiftmax = 2;
777 } else if (shiftmax > 10) {
778 shiftmax = 10;
779 }
780
782 try {
783 result.flags[FAILURE.number] =
784 !getAdaptiveMoments(image, control.background, xcen, ycen, shiftmax, &result, control.maxIter,
785 control.tol1, control.tol2, negative);
786 } catch (pex::exceptions::Exception &err) {
787 result.flags[FAILURE.number] = true;
788 }
789 if (result.flags[UNWEIGHTED.number] || result.flags[SHIFT.number]) {
790 // These are also considered fatal errors in terms of the quality of the results,
791 // even though they do produce some results.
792 result.flags[FAILURE.number] = true;
793 }
794 double IxxIyy = result.getQuadrupole().getIxx() * result.getQuadrupole().getIyy();
795 double Ixy_sq = result.getQuadrupole().getIxy();
796 Ixy_sq *= Ixy_sq;
797 double epsilon = 1.0e-6;
798 if (IxxIyy < (1.0 + epsilon) * Ixy_sq)
799 // We are checking that Ixx*Iyy > (1 + epsilon)*Ixy*Ixy where epsilon is suitably small. The
800 // value of epsilon used here is a magic number subject to future review (DM-5801 was marked won't fix).
801 {
802 if (!result.flags[FAILURE.number]) {
804 (boost::format("computeAdaptiveMoments IxxIxy %d < (1 + eps=%d)*(Ixy^2=%d);"
805 " implying singular moments without any flag set")
806 % IxxIyy % epsilon % Ixy_sq).str());
807 }
808 }
809
810 // getAdaptiveMoments() just computes the zeroth moment in result.instFlux (and its error in
811 // result.instFluxErr, result.instFlux_xx_Cov, etc.) That's related to the instFlux by some geometric
812 // factors, which we apply here.
813 // This scale factor is just the inverse of the normalization constant in a bivariate normal distribution:
814 // 2*pi*sigma_x*sigma_y*sqrt(1-rho^2), where rho is the correlation.
815 // This happens to be twice the ellipse area pi*sigma_maj*sigma_min, which is identically equal to:
816 // pi*sqrt(I_xx*I_yy - I_xy^2); i.e. pi*sqrt(determinant(I))
817 double instFluxScale = geom::TWOPI * std::sqrt(IxxIyy - Ixy_sq);
818
819 result.instFlux *= instFluxScale;
820 result.instFluxErr *= instFluxScale;
821 result.x += image.getX0();
822 result.y += image.getY0();
823
824 if (ImageAdaptor<ImageT>::hasVariance) {
825 result.instFlux_xx_Cov *= instFluxScale;
826 result.instFlux_yy_Cov *= instFluxScale;
827 result.instFlux_xy_Cov *= instFluxScale;
828 }
829
830 return result;
831}
832
833template <typename ImageT>
836 geom::Point2D const &center) {
837 // while arguments to computeFixedMomentsFlux are in PARENT coordinates, the implementation is LOCAL.
838 geom::Point2D localCenter = center - geom::Extent2D(image.getXY0());
839
840 geom::BoxI const bbox = computeAdaptiveMomentsBBox(image.getBBox(afw::image::LOCAL), localCenter,
841 shape.getIxx(), shape.getIxy(), shape.getIyy());
842
844 getWeights(shape.getIxx(), shape.getIxy(), shape.getIyy());
845
847
848 if (!std::get<0>(weights).first) {
849 throw pex::exceptions::InvalidParameterError("Input shape is singular");
850 }
851
852 double const w11 = std::get<1>(weights);
853 double const w12 = std::get<2>(weights);
854 double const w22 = std::get<3>(weights);
855 bool const interp = shouldInterp(shape.getIxx(), shape.getIyy(), std::get<0>(weights).second);
856
857 double sum0 = 0; // sum of pixel values weighted by a Gaussian
858 calcmom(ImageAdaptor<ImageT>().getImage(image), localCenter.getX(), localCenter.getY(), bbox,
859 0.0, interp, w11, w12, w22, sum0);
860
861 result.instFlux = sum0 * 2.0;
862
863 if (ImageAdaptor<ImageT>::hasVariance) {
864 int ix = static_cast<int>(center.getX() - image.getX0());
865 int iy = static_cast<int>(center.getY() - image.getY0());
866 if (!image.getBBox(afw::image::LOCAL).contains(geom::Point2I(ix, iy))) {
868 (boost::format("Center (%d,%d) not in image (%dx%d)") % ix % iy %
869 image.getWidth() % image.getHeight())
870 .str());
871 }
872 double var = ImageAdaptor<ImageT>().getVariance(image, ix, iy);
873 // 0th moment (i0) error = sqrt(var / wArea); instFlux (error) = 2 * wArea * i0 (error)
874 double const wArea = geom::PI * std::sqrt(shape.getDeterminant());
875 result.instFluxErr = 2 * std::sqrt(var * wArea);
876 }
877
878 return result;
879}
880
882 afw::image::Exposure<float> const &exposure) const {
883 bool negative = false;
884
885 try {
886 negative = measRecord.get(measRecord.getSchema().find<afw::table::Flag>("flags_negative").key);
887 } catch (pexExcept::Exception &e) {
888 }
890 exposure.getMaskedImage(), _centroidExtractor(measRecord, _resultKey.getFlagHandler()), negative,
891 _ctrl);
892
893 if (_ctrl.doMeasurePsf) {
894 // Compute moments of Psf model. In the interest of implementing this quickly, we're just
895 // calling Psf::computeShape(), which delegates to SdssShapeResult::computeAdaptiveMoments
896 // for all nontrivial Psf classes. But this could in theory save the results of a shape
897 // computed some other way as part of base_SdssShape, which might be confusing. We should
898 // fix this eventually either by making Psf shape measurement not part of base_SdssShape, or
899 // by making the measurements stored with shape.sdss always computed via the
900 // SdssShapeAlgorithm instead of delegating to the Psf class.
901 try {
903 if (!psf) {
904 result.flags[PSF_SHAPE_BAD.number] = true;
905 } else {
906 _resultKey.setPsfShape(measRecord, psf->computeShape(geom::Point2D(result.x, result.y)));
907 }
908 } catch (pex::exceptions::Exception &err) {
909 result.flags[PSF_SHAPE_BAD.number] = true;
910 }
911 }
912
913 measRecord.set(_resultKey, result);
914}
915
917 _resultKey.getFlagHandler().handleFailure(measRecord, error);
918}
919
920#define INSTANTIATE_IMAGE(IMAGE) \
921 template SdssShapeResult SdssShapeAlgorithm::computeAdaptiveMoments( \
922 IMAGE const &, geom::Point2D const &, bool, Control const &); \
923 template FluxResult SdssShapeAlgorithm::computeFixedMomentsFlux( \
924 IMAGE const &, afw::geom::ellipses::Quadrupole const &, geom::Point2D const &)
925
926#define INSTANTIATE_PIXEL(PIXEL) \
927 INSTANTIATE_IMAGE(afw::image::Image<PIXEL>); \
928 INSTANTIATE_IMAGE(afw::image::MaskedImage<PIXEL>);
929
931INSTANTIATE_PIXEL(float);
932INSTANTIATE_PIXEL(double);
933
936 : BaseTransform{name}, _instFluxTransform{name, mapper}, _centroidTransform{name, mapper} {
937 // If the input schema has a PSF flag -- it's optional -- assume we are also transforming the PSF.
938 _transformPsf = mapper.getInputSchema().getNames().count("sdssShape_flag_psf") ? true : false;
939
940 // Skip the last flag if not transforming the PSF shape.
943 if (flag == SdssShapeAlgorithm::FAILURE) continue;
944 if (mapper.getInputSchema().getNames().count(mapper.getInputSchema().join(name, flag.name)) == 0)
945 continue;
947 mapper.getInputSchema().find<afw::table::Flag>(name + "_" + flag.name).key;
948 mapper.addMapping(key);
949 }
950
951 _outShapeKey = ShapeResultKey::addFields(mapper.editOutputSchema(), name, "Shape in celestial moments",
953 if (_transformPsf) {
954 _outPsfShapeKey = afw::table::QuadrupoleKey::addFields(mapper.editOutputSchema(), name + "_psf",
955 "PSF shape in celestial moments",
957 }
958}
959
961 afw::table::BaseCatalog &outputCatalog, afw::geom::SkyWcs const &wcs,
962 afw::image::PhotoCalib const &photoCalib) const {
963 // The instFlux and cetroid transforms will check that the catalog lengths
964 // match and throw if not, so we don't repeat the test here.
965 _instFluxTransform(inputCatalog, outputCatalog, wcs, photoCalib);
966 _centroidTransform(inputCatalog, outputCatalog, wcs, photoCalib);
967
968 CentroidResultKey centroidKey(inputCatalog.getSchema()[_name]);
969 ShapeResultKey inShapeKey(inputCatalog.getSchema()[_name]);
970 afw::table::QuadrupoleKey inPsfShapeKey;
971 if (_transformPsf) {
972 inPsfShapeKey = afw::table::QuadrupoleKey(
973 inputCatalog.getSchema()[inputCatalog.getSchema().join(_name, "psf")]);
974 }
975
976 afw::table::SourceCatalog::const_iterator inSrc = inputCatalog.begin();
977 afw::table::BaseCatalog::iterator outSrc = outputCatalog.begin();
978 for (; inSrc != inputCatalog.end(); ++inSrc, ++outSrc) {
979 ShapeResult inShape = inShapeKey.get(*inSrc);
980 ShapeResult outShape;
981
982 // The transformation from the (x, y) to the (Ra, Dec) basis.
984 wcs.linearizePixelToSky(centroidKey.get(*inSrc).getCentroid(), geom::radians);
985 outShape.setShape(inShape.getShape().transform(crdTr.getLinear()));
986
987 // Transformation matrix from pixel to celestial basis.
989 outShape.setShapeErr((m * inShape.getShapeErr().cast<double>() * m.transpose()).cast<ErrElement>());
990
991 _outShapeKey.set(*outSrc, outShape);
992
993 if (_transformPsf) {
994 _outPsfShapeKey.set(*outSrc, inPsfShapeKey.get(*inSrc).transform(crdTr.getLinear()));
995 }
996 }
997}
998
999} // namespace base
1000} // namespace meas
1001} // namespace lsst
py::object result
Definition: _schema.cc:429
table::Key< std::string > name
Definition: Amplifier.cc:116
AmpInfoBoxKey bbox
Definition: Amplifier.cc:117
double x
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition: Exception.h:48
afw::table::Key< afw::table::Array< ImagePixelT > > image
uint64_t * ptr
Definition: RangeSet.cc:88
SchemaMapper * mapper
Definition: SchemaMapper.cc:71
table::Key< table::Array< std::uint8_t > > wcs
Definition: SkyWcs.cc:66
int y
Definition: SpanSet.cc:48
int m
Definition: SpanSet.cc:48
table::Schema schema
Definition: python.h:134
A 2-dimensional celestial WCS that transform pixels to ICRS RA/Dec, using the LSST standard for pixel...
Definition: SkyWcs.h:117
Transformer transform(lsst::geom::LinearTransform const &transform)
Return the transform that maps the ellipse to the unit circle.
Definition: Transformer.h:116
An ellipse core with quadrupole moments as parameters.
Definition: Quadrupole.h:47
double getDeterminant() const
Return the determinant of the matrix representation.
Definition: Quadrupole.h:83
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Definition: Exposure.h:72
MaskedImageT getMaskedImage()
Return the MaskedImage.
Definition: Exposure.h:228
std::shared_ptr< lsst::afw::detection::Psf const > getPsf() const
Return the Exposure's Psf object.
Definition: Exposure.h:319
A class to manipulate images, masks, and variance as a single object.
Definition: MaskedImage.h:73
lsst::afw::image::Image< ImagePixelT > Image
Definition: MaskedImage.h:85
The photometric calibration of an exposure.
Definition: PhotoCalib.h:114
Base class for all records.
Definition: BaseRecord.h:31
Field< T >::Value get(Key< T > const &key) const
Return the value of a field for the given key.
Definition: BaseRecord.h:151
Schema getSchema() const
Return the Schema that holds this record's fields and keys.
Definition: BaseRecord.h:80
void set(Key< T > const &key, U const &value)
Set value of a field for the given key.
Definition: BaseRecord.h:164
Iterator class for CatalogT.
Definition: Catalog.h:40
iterator begin()
Iterator access.
Definition: Catalog.h:401
A FunctorKey used to get or set a geom::ellipses::Quadrupole from a tuple of constituent Keys.
Definition: aggregates.h:282
geom::ellipses::Quadrupole get(BaseRecord const &record) const override
Get a Quadrupole from the given record.
Definition: aggregates.cc:110
void set(BaseRecord &record, geom::ellipses::Quadrupole const &value) const override
Set a Quadrupole in the given record.
Definition: aggregates.cc:114
static QuadrupoleKey addFields(Schema &schema, std::string const &name, std::string const &doc, CoordinateType coordType=CoordinateType::PIXEL)
Add a set of quadrupole subfields to a schema and return a QuadrupoleKey that points to them.
Definition: aggregates.cc:100
bool isValid() const noexcept
Return True if all the constituent Keys are valid.
Definition: aggregates.h:342
Defines the fields and offsets for a table.
Definition: Schema.h:51
SchemaItem< T > find(std::string const &name) const
Find a SchemaItem in the Schema by name.
Definition: Schema.cc:467
A mapping between the keys of two Schemas, used to copy data between them.
Definition: SchemaMapper.h:21
typename Base::const_iterator const_iterator
Definition: SortedCatalog.h:50
Record class that contains measurements made on a single exposure.
Definition: Source.h:78
A proxy type for name lookups in a Schema.
Definition: Schema.h:367
An affine coordinate transformation consisting of a linear transformation and an offset.
LinearTransform const & getLinear() const noexcept
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
An integer coordinate rectangle.
Definition: Box.h:55
Abstract base class for all C++ measurement transformations.
Definition: Transform.h:86
A FunctorKey for CentroidResult.
virtual CentroidResult get(afw::table::BaseRecord const &record) const
Get a CentroidResult from the given record.
bool isValid() const
Return True if the centroid key is valid.
static CentroidResultKey addFields(afw::table::Schema &schema, std::string const &name, std::string const &doc, UncertaintyEnum uncertainty)
Add the appropriate fields to a Schema, and return a CentroidResultKey that manages them.
vector-type utility class to build a collection of FlagDefinitions
Definition: FlagHandler.h:60
std::size_t size() const
return the current size (number of defined elements) of the collection
Definition: FlagHandler.h:125
Utility class for handling flag fields that indicate the failure modes of an algorithm.
Definition: FlagHandler.h:148
void handleFailure(afw::table::BaseRecord &record, MeasurementError const *error=nullptr) const
Handle an expected or unexpected Exception thrown by a measurement algorithm.
Definition: FlagHandler.cc:76
static FlagHandler addFields(afw::table::Schema &schema, std::string const &prefix, FlagDefinitionList const &flagDefs, FlagDefinitionList const &exclDefs=FlagDefinitionList::getEmptyList())
Add Flag fields to a schema, creating a FlagHandler object to manage them.
Definition: FlagHandler.cc:37
void setValue(afw::table::BaseRecord &record, std::size_t i, bool value) const
Set the flag field corresponding to the given flag index.
Definition: FlagHandler.h:262
bool getValue(afw::table::BaseRecord const &record, std::size_t i) const
Return the value of the flag field corresponding to the given flag index.
Definition: FlagHandler.h:242
bool isValid() const
Return True if both the instFlux and instFluxErr Keys are valid.
static FluxResultKey addFields(afw::table::Schema &schema, std::string const &name, std::string const &doc)
Add a pair of _instFlux, _instFluxErr fields to a Schema, and return a FluxResultKey that points to t...
Exception to be thrown when a measurement algorithm experiences a known failure mode.
Definition: exceptions.h:48
static FlagDefinition const SHIFT
Definition: SdssShape.h:158
static FlagDefinitionList const & getFlagDefinitions()
Definition: SdssShape.cc:58
virtual void measure(afw::table::SourceRecord &measRecord, afw::image::Exposure< float > const &exposure) const
Called to measure a single child source in an image.
Definition: SdssShape.cc:881
static Result computeAdaptiveMoments(ImageT const &image, geom::Point2D const &position, bool negative=false, Control const &ctrl=Control())
Compute the adaptive Gaussian-weighted moments of an image.
static FlagDefinition const FAILURE
Definition: SdssShape.h:155
static unsigned int const N_FLAGS
Definition: SdssShape.h:154
static FluxResult computeFixedMomentsFlux(ImageT const &image, afw::geom::ellipses::Quadrupole const &shape, geom::Point2D const &position)
Compute the instFlux within a fixed Gaussian aperture.
Definition: SdssShape.cc:834
static FlagDefinition const MAXITER
Definition: SdssShape.h:159
static FlagDefinition const UNWEIGHTED
Definition: SdssShape.h:157
static FlagDefinition const PSF_SHAPE_BAD
Definition: SdssShape.h:160
static FlagDefinition const UNWEIGHTED_BAD
Definition: SdssShape.h:156
SdssShapeAlgorithm(Control const &ctrl, std::string const &name, afw::table::Schema &schema)
Definition: SdssShape.cc:759
virtual void fail(afw::table::SourceRecord &measRecord, MeasurementError *error=nullptr) const
Handle an exception thrown by the current algorithm by setting flags in the given record.
Definition: SdssShape.cc:916
A C++ control class to handle SdssShapeAlgorithm's configuration.
Definition: SdssShape.h:52
double maxShift
"Maximum centroid shift, limited to 2-10" ;
Definition: SdssShape.h:56
int maxIter
"Maximum number of iterations" ;
Definition: SdssShape.h:55
float tol2
"Convergence tolerance for FWHM" ;
Definition: SdssShape.h:58
bool doMeasurePsf
"Whether to also compute the shape of the PSF model" ;
Definition: SdssShape.h:59
float tol1
"Convergence tolerance for e1,e2" ;
Definition: SdssShape.h:57
double background
"Additional value to add to background" ;
Definition: SdssShape.h:54
Result object SdssShapeAlgorithm.
Definition: SdssShape.h:224
ErrElement instFlux_yy_Cov
instFlux, yy term in the uncertainty covariance matrix
Definition: SdssShape.h:227
SdssShapeResult()
Constructor; initializes everything to NaN.
Definition: SdssShape.cc:636
ErrElement instFlux_xy_Cov
instFlux, xy term in the uncertainty covariance matrix
Definition: SdssShape.h:228
std::bitset< SdssShapeAlgorithm::N_FLAGS > flags
Status flags (see SdssShapeAlgorithm).
Definition: SdssShape.h:230
ErrElement instFlux_xx_Cov
instFlux, xx term in the uncertainty covariance matrix
Definition: SdssShape.h:226
A FunctorKey that maps SdssShapeResult to afw::table Records.
Definition: SdssShape.h:73
SdssShapeResultKey()
Default constructor; instance will not be usuable unless subsequently assigned to.
Definition: SdssShape.h:90
virtual SdssShapeResult get(afw::table::BaseRecord const &record) const
Get an SdssShapeResult from the given record.
Definition: SdssShape.cc:707
static SdssShapeResultKey addFields(afw::table::Schema &schema, std::string const &name, bool doMeasurePsf)
Add the appropriate fields to a Schema, and return a SdssShapeResultKey that manages them.
Definition: SdssShape.cc:641
virtual afw::geom::ellipses::Quadrupole getPsfShape(afw::table::BaseRecord const &record) const
Get a Quadrupole for the Psf from the given record.
Definition: SdssShape.cc:722
bool isValid() const
Return True if the key is valid.
Definition: SdssShape.cc:752
bool operator==(SdssShapeResultKey const &other) const
Compare the FunctorKey for equality with another, using the underlying Keys.
Definition: SdssShape.cc:744
virtual void set(afw::table::BaseRecord &record, SdssShapeResult const &value) const
Set an SdssShapeResult in the given record.
Definition: SdssShape.cc:726
virtual void setPsfShape(afw::table::BaseRecord &record, afw::geom::ellipses::Quadrupole const &value) const
Set a Quadrupole for the Psf at the position of the given record.
Definition: SdssShape.cc:739
FlagHandler const & getFlagHandler() const
Definition: SdssShape.h:125
virtual void operator()(afw::table::SourceCatalog const &inputCatalog, afw::table::BaseCatalog &outputCatalog, afw::geom::SkyWcs const &wcs, afw::image::PhotoCalib const &photoCalib) const
Definition: SdssShape.cc:960
SdssShapeTransform(Control const &ctrl, std::string const &name, afw::table::SchemaMapper &mapper)
Definition: SdssShape.cc:934
A FunctorKey for ShapeResult.
static ShapeResultKey addFields(afw::table::Schema &schema, std::string const &name, std::string const &doc, UncertaintyEnum uncertainty, afw::table::CoordinateType coordType=afw::table::CoordinateType::PIXEL)
Add the appropriate fields to a Schema, and return a ShapeResultKey that manages them.
virtual ShapeResult get(afw::table::BaseRecord const &record) const
Get a ShapeResult from the given record.
bool isValid() const
Return True if the shape key is valid.
virtual void set(afw::table::BaseRecord &record, ShapeResult const &value) const
Set a ShapeResult in the given record.
Reports arguments outside the domain of an operation.
Definition: Runtime.h:57
Provides consistent interface for LSST exceptions.
Definition: Exception.h:107
Reports invalid arguments.
Definition: Runtime.h:66
Reports errors in the logical structure of the program.
Definition: Runtime.h:46
Reports attempts to access elements using an invalid key.
Definition: Runtime.h:151
Reports errors that are due to events beyond the control of the program.
Definition: Runtime.h:104
T exp(T... args)
T fabs(T... args)
T isnan(T... args)
T make_pair(T... args)
T make_tuple(T... args)
T max(T... args)
T min(T... args)
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
int positionToIndex(double pos)
Convert image position to nearest integer index.
Definition: ImageUtils.h:69
constexpr double PI
The ratio of a circle's circumference to diameter.
Definition: Angle.h:40
Extent< double, 2 > Extent2D
Definition: Extent.h:400
constexpr double TWOPI
Definition: Angle.h:41
constexpr AngleUnit radians
constant with units of radians
Definition: Angle.h:109
@ SIGMA_ONLY
Only the diagonal elements of the covariance matrix are provided.
Definition: constants.h:45
@ FULL_COVARIANCE
The full covariance matrix is provided.
Definition: constants.h:46
@ NO_UNCERTAINTY
Algorithm provides no uncertainy information at all.
Definition: constants.h:44
Eigen::Matrix< ShapeElement, 3, 3, Eigen::DontAlign > ShapeTrMatrix
Definition: constants.h:62
float ErrElement
Definition: constants.h:55
ShapeTrMatrix makeShapeTransformMatrix(geom::LinearTransform const &xform)
Construct a matrix suitable for transforming second moments.
def format(config, name=None, writeSourceLine=True, prefix="", verbose=False)
Definition: history.py:174
A base class for image defects.
STL namespace.
T pow(T... args)
T quiet_NaN(T... args)
T sqrt(T... args)
afw::table::Key< double > weight
#define INSTANTIATE_PIXEL(PIXEL)
Definition: SdssShape.cc:926
A reusable struct for centroid measurements.
Centroid const getCentroid() const
Return a Point object containing the measured x and y.
Simple class used to define and document flags The name and doc constitute the identity of the FlagDe...
Definition: FlagHandler.h:40
A reusable result struct for instFlux measurements.
Definition: FluxUtilities.h:41
meas::base::Flux instFlux
Measured instFlux in DN.
Definition: FluxUtilities.h:42
A reusable struct for moments-based shape measurements.
Shape const getShape() const
Return an afw::geom::ellipses object corresponding to xx, yy, xy.
ShapeCov const getShapeErr() const
Return the 3x3 symmetric covariance matrix, with rows and columns ordered (xx, yy,...
void setShape(Shape const &shape)
Set struct elements from the given Quadrupole object.
ShapeElement xy
image or model second moment for xy^2
ShapeElement xx
image or model second moment for x^2
void setShapeErr(ShapeCov const &matrix)
Set the struct standard deviation elements from the given matrix, with rows and columns ordered (xx,...
ShapeElement yy
image or model second moment for y^2
Key< int > psf
Definition: Exposure.cc:65
Key< int > photoCalib
Definition: Exposure.cc:67