LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
transformFactory.cc
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * LSST Data Management System
4 * See COPYRIGHT file at the top of the source tree.
5 *
6 * This product includes software developed by the
7 * LSST Project (http://www.lsst.org/).
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the LSST License Statement and
20 * the GNU General Public License along with this program. If not,
21 * see <http://www.lsstcorp.org/LegalNotices/>.
22 */
23
24#include <sstream>
25#include <cmath>
26
27#include "astshim.h"
28
29#include "Eigen/Core"
30
33#include "lsst/pex/exceptions.h"
34
35#include "ndarray.h"
36#include "ndarray/eigen.h"
37
38namespace lsst {
39namespace afw {
40namespace geom {
41
42namespace {
43/*
44 * Print a vector to a stream.
45 *
46 * The exact details of the representation are unspecified and subject to
47 * change, but the following may be regarded as typical:
48 *
49 * [1.0, -3.560, 42.0]
50 *
51 * @tparam T the element type. Must support stream output.
52 */
53template <typename T>
55 os << '[';
56 bool first = true;
57 for (T element : v) {
58 if (first) {
59 first = false;
60 } else {
61 os << ", ";
62 }
63 os << element;
64 }
65 os << ']';
66 return os;
67}
68
69/*
70 * Convert a Matrix to the equivalent ndarray.
71 *
72 * @param matrix The matrix to convert.
73 * @returns an ndarray containing a copy of the data in `matrix`
74 *
75 * @note Returning a copy is safer that returning a view because ndarray cannot share
76 * management of the memory with Eigen. So as long as the matrix is small,
77 * making a copy is preferred even if a view would suffice.
78 */
79template <typename Derived>
81 Eigen::MatrixBase<Derived> const &matrix) {
83 ndarray::allocate(ndarray::makeVector(matrix.rows(), matrix.cols()));
84 ndarray::asEigenMatrix(array) = matrix;
85 return array;
86}
87
88/*
89 * Tests whether polynomial coefficients match the expected format.
90 *
91 * @param coeffs radial polynomial coefficients.
92 * @returns `true` if either `coeffs.size()` = 0, or `coeffs.size()` > 1,
93 * `coeffs[0]` = 0, and `coeffs[1]` &ne; 0. `false` otherwise.
94 */
95bool areRadialCoefficients(std::vector<double> const &coeffs) noexcept {
96 if (coeffs.empty()) {
97 return true;
98 } else {
99 return coeffs.size() > 1 && coeffs[0] == 0.0 && coeffs[1] != 0.0;
100 }
101}
102
103/*
104 * Make a one-dimensional polynomial distortion.
105 *
106 * The Mapping computes a scalar function
107 * @f[ f(x) = \sum_{i=1}^{N} \mathrm{coeffs[i]} \ x^i @f]
108 *
109 * @param coeffs radial polynomial coefficients. Must have `size` > 1,
110 * `coeffs[0]` = 0, and `coeffs[1]` &ne; 0.
111 * @returns the function represented by `coeffs`. The Mapping shall have an
112 * inverse, which may be approximate.
113 *
114 * @exceptsafe Provides basic exception safety.
115 *
116 * @warning Input to this function is not validated.
117 */
118ast::PolyMap makeOneDDistortion(std::vector<double> const &coeffs) {
119 int const nCoeffs = coeffs.size() - 1; // ignore coeffs[0]
120 ndarray::Array<double, 2, 2> const polyCoeffs = ndarray::allocate(ndarray::makeVector(nCoeffs, 3));
121 for (size_t i = 1; i < coeffs.size(); ++i) {
122 polyCoeffs[i - 1][0] = coeffs[i];
123 polyCoeffs[i - 1][1] = 1;
124 polyCoeffs[i - 1][2] = i;
125 }
126
127 return ast::PolyMap(polyCoeffs, 1, "IterInverse=1, TolInverse=1e-8, NIterInverse=30");
128}
129
130} // namespace
131
133 lsst::geom::Point2D const &inPoint) {
134 auto outPoint = original.applyForward(inPoint);
135 Eigen::Matrix2d jacobian = original.getJacobian(inPoint);
136 for (int i = 0; i < 2; ++i) {
137 if (!std::isfinite(outPoint[i])) {
138 std::ostringstream buffer;
139 buffer << "Transform ill-defined: " << inPoint << " -> " << outPoint;
141 }
142 }
143 if (!jacobian.allFinite()) {
144 std::ostringstream buffer;
145 buffer << "Transform not continuous at " << inPoint << ": J = " << jacobian;
147 }
148
149 // y(x) = J (x - x0) + y0 = J x + (y0 - J x0)
150 auto offset = outPoint.asEigen() - jacobian * inPoint.asEigen();
151 return lsst::geom::AffineTransform(jacobian, offset);
152}
153
155 auto const offset = lsst::geom::Point2D(affine.getTranslation());
156 auto const jacobian = affine.getLinear().getMatrix();
157
159 auto const map = ast::MatrixMap(toNdArray(jacobian))
160 .then(ast::ShiftMap(toEndpoint.dataFromPoint(offset)))
161 .simplified();
162 return std::make_shared<TransformPoint2ToPoint2>(*map);
163}
164
166 if (!areRadialCoefficients(coeffs)) {
167 std::ostringstream buffer;
168 buffer << "Invalid coefficient vector: " << coeffs;
170 }
171
172 if (coeffs.empty()) {
173 return std::make_shared<TransformPoint2ToPoint2>(ast::UnitMap(2));
174 } else {
175 // distortion is a radial polynomial with center at focal plane center;
176 // the polynomial has an iterative inverse
177 std::vector<double> center = {0.0, 0.0};
178 ast::PolyMap const distortion = makeOneDDistortion(coeffs);
179 return std::make_shared<TransformPoint2ToPoint2>(*ast::makeRadialMapping(center, distortion));
180 }
181}
182
184 std::vector<double> const &inverseCoeffs) {
185 if (forwardCoeffs.empty() != inverseCoeffs.empty()) {
186 throw LSST_EXCEPT(
188 "makeRadialTransform must have either both empty or both non-empty coefficient vectors.");
189 }
190 if (forwardCoeffs.empty()) {
191 // no forward or inverse coefficients, so no distortion
192 return std::make_shared<TransformPoint2ToPoint2>(ast::UnitMap(2));
193 }
194
195 if (!areRadialCoefficients(forwardCoeffs)) {
196 std::ostringstream buffer;
197 buffer << "Invalid forward coefficient vector: " << forwardCoeffs;
199 }
200 if (!areRadialCoefficients(inverseCoeffs)) {
201 std::ostringstream buffer;
202 buffer << "Invalid inverse coefficient vector: " << inverseCoeffs;
204 }
205 // distortion is a 1-d radial polynomial centered at focal plane center;
206 // the polynomial has coefficients specified for both the forward and inverse directions
207 std::vector<double> center = {0.0, 0.0};
208 ast::PolyMap const forward = makeOneDDistortion(forwardCoeffs);
209 auto inverse = makeOneDDistortion(inverseCoeffs).inverted();
210 auto distortion = ast::TranMap(forward, *inverse);
211 return std::make_shared<TransformPoint2ToPoint2>(*ast::makeRadialMapping(center, distortion));
212}
213
215 return std::make_shared<TransformPoint2ToPoint2>(ast::UnitMap(2));
216}
217
218} // namespace geom
219} // namespace afw
220} // namespace lsst
double element[2]
Definition: BaseTable.cc:90
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition: Exception.h:48
std::ostream * os
Definition: Schema.cc:557
std::shared_ptr< Mapping > simplified() const
Return a simplied version of the mapping (which may be a compound Mapping such as a CmpMap).
Definition: Mapping.h:248
SeriesMap then(Mapping const &next) const
Return a series compound mapping this(first(input)) containing shallow copies of the original.
Definition: Mapping.cc:37
MatrixMap is a form of Mapping which performs a general linear transformation.
Definition: MatrixMap.h:42
PolyMap is a Mapping which performs a general polynomial transformation.
Definition: PolyMap.h:49
ShiftMap is a linear Mapping which shifts each axis by a specified constant value.
Definition: ShiftMap.h:40
TranMap is a Mapping which combines the forward transformation of a supplied Mapping with the inverse...
Definition: TranMap.h:49
A UnitMap is a unit (null) Mapping that has no effect on the coordinates supplied to it.
Definition: UnitMap.h:44
An endpoint for lsst::geom::Point2D.
Definition: Endpoint.h:261
Transform LSST spatial data, such as lsst::geom::Point2D and lsst::geom::SpherePoint,...
Definition: Transform.h:68
Eigen::MatrixXd getJacobian(FromPoint const &x) const
The Jacobian matrix of this Transform.
Definition: Transform.cc:122
ToPoint applyForward(FromPoint const &point) const
Transform one point in the forward direction ("from" to "to")
An affine coordinate transformation consisting of a linear transformation and an offset.
Extent2D const & getTranslation() const noexcept
LinearTransform const & getLinear() const noexcept
EigenVector const & asEigen() const noexcept(IS_ELEMENT_NOTHROW_COPYABLE)
Return a fixed-size Eigen representation of the coordinate object.
Matrix const & getMatrix() const noexcept
Reports invalid arguments.
Definition: Runtime.h:66
T empty(T... args)
T isfinite(T... args)
std::shared_ptr< Mapping > makeRadialMapping(std::vector< double > const &center, Mapping const &mapping1d)
Construct a radially symmetric mapping from a 1-dimensional mapping.
Definition: functional.cc:48
std::shared_ptr< TransformPoint2ToPoint2 > makeTransform(lsst::geom::AffineTransform const &affine)
Wrap an lsst::geom::AffineTransform as a Transform.
std::shared_ptr< TransformPoint2ToPoint2 > makeRadialTransform(std::vector< double > const &coeffs)
A purely radial polynomial distortion.
std::ostream & operator<<(std::ostream &os, GenericEndpoint const &endpoint)
Print "GenericEndpoint(_n_)" to the ostream where _n_ is the number of axes, e.g. "GenericAxes(4)".
Definition: Endpoint.cc:239
std::shared_ptr< TransformPoint2ToPoint2 > makeIdentityTransform()
Trivial Transform x → x.
lsst::geom::AffineTransform linearizeTransform(TransformPoint2ToPoint2 const &original, lsst::geom::Point2D const &inPoint)
Approximate a Transform by its local linearization.
Point< double, 2 > Point2D
Definition: Point.h:324
double Scalar
Typedefs to be used for probability and parameter values.
Definition: common.h:44
A base class for image defects.
T size(T... args)
T str(T... args)