LSST Applications g070148d5b3+33e5256705,g0d53e28543+25c8b88941,g0da5cf3356+2dd1178308,g1081da9e2a+62d12e78cb,g17e5ecfddb+7e422d6136,g1c76d35bf8+ede3a706f7,g295839609d+225697d880,g2e2c1a68ba+cc1f6f037e,g2ffcdf413f+853cd4dcde,g38293774b4+62d12e78cb,g3b44f30a73+d953f1ac34,g48ccf36440+885b902d19,g4b2f1765b6+7dedbde6d2,g5320a0a9f6+0c5d6105b6,g56b687f8c9+ede3a706f7,g5c4744a4d9+ef6ac23297,g5ffd174ac0+0c5d6105b6,g6075d09f38+66af417445,g667d525e37+2ced63db88,g670421136f+2ced63db88,g71f27ac40c+2ced63db88,g774830318a+463cbe8d1f,g7876bc68e5+1d137996f1,g7985c39107+62d12e78cb,g7fdac2220c+0fd8241c05,g96f01af41f+368e6903a7,g9ca82378b8+2ced63db88,g9d27549199+ef6ac23297,gabe93b2c52+e3573e3735,gb065e2a02a+3dfbe639da,gbc3249ced9+0c5d6105b6,gbec6a3398f+0c5d6105b6,gc9534b9d65+35b9f25267,gd01420fc67+0c5d6105b6,geee7ff78d7+a14128c129,gf63283c776+ede3a706f7,gfed783d017+0c5d6105b6,w.2022.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
ConvexPolygonImpl.h
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2014-2016 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
23#ifndef LSST_SPHGEOM_CONVEXPOLYGONIMPL_H_
24#define LSST_SPHGEOM_CONVEXPOLYGONIMPL_H_
25
34
35#include "lsst/sphgeom/Box.h"
36#include "lsst/sphgeom/Box3d.h"
37#include "lsst/sphgeom/Circle.h"
40#include "lsst/sphgeom/utils.h"
41
42
43namespace lsst {
44namespace sphgeom {
45namespace detail {
46
47template <typename VertexIterator>
48UnitVector3d centroid(VertexIterator const begin, VertexIterator const end) {
49 // The center of mass is obtained via trivial generalization of
50 // the formula for spherical triangles from:
51 //
52 // The centroid and inertia tensor for a spherical triangle
53 // John E. Brock
54 // 1974, Naval Postgraduate School, Monterey Calif.
55 Vector3d cm;
56 VertexIterator i = std::prev(end);
57 VertexIterator j = begin;
58 for (; j != end; i = j, ++j) {
59 Vector3d v = (*i).robustCross(*j);
60 double s = 0.5 * v.normalize();
61 double c = (*i).dot(*j);
62 double a = (s == 0.0 && c == 0.0) ? 0.0 : std::atan2(s, c);
63 cm += v * a;
64 }
65 return UnitVector3d(cm);
66}
67
68template <typename VertexIterator>
69Circle boundingCircle(VertexIterator const begin, VertexIterator const end) {
70 UnitVector3d c = centroid(begin, end);
71 // Compute the maximum squared chord length between the centroid and
72 // all vertices.
73 VertexIterator i = begin;
74 double cl2 = 0.0;
75 for (; i != end; ++i) {
76 cl2 = std::max(cl2, (*i - c).getSquaredNorm());
77 }
78 // Add double the maximum squared-chord-length error, so that the
79 // bounding circle we return also reliably CONTAINS this polygon.
80 return Circle(c, cl2 + 2.0 * MAX_SQUARED_CHORD_LENGTH_ERROR);
81}
82
83
84template <typename VertexIterator>
85Box boundingBox(VertexIterator const begin, VertexIterator const end) {
86 Angle const eps(5.0e-10); // ~ 0.1 milli-arcseconds
87 Box bbox;
88 VertexIterator i = std::prev(end);
89 VertexIterator j = begin;
90 bool haveCW = false;
91 bool haveCCW = false;
92 // Compute the bounding box for each vertex. When converting a Vector3d
93 // to a LonLat, the relative error on the longitude is about 4*2^-53,
94 // and the relative error on the latitude is about twice that (assuming
95 // std::atan2 and std::sqrt accurate to within 1 ulp). We convert each
96 // vertex to a conservative bounding box for its spherical coordinates,
97 // and compute a bounding box for the union of all these boxes.
98 //
99 // Furthermore, the latitude range of an edge can be greater than the
100 // latitude range of its endpoints - this occurs when the minimum or
101 // maximum latitude point on the great circle defined by the edge vertices
102 // lies in the edge interior.
103 for (; j != end; i = j, ++j) {
104 LonLat p(*j);
105 bbox.expandTo(Box(p, eps, eps));
106 if (!haveCW || !haveCCW) {
107 int o = orientationZ(*i, *j);
108 haveCCW = haveCCW || (o > 0);
109 haveCW = haveCW || (o < 0);
110 }
111 // Compute the plane normal for edge i, j.
112 Vector3d n = (*i).robustCross(*j);
113 // Compute a vector v with positive z component that lies on both the
114 // edge plane and on the plane defined by the z axis and the edge plane
115 // normal. This is the direction of maximum latitude for the great
116 // circle containing the edge, and -v is the direction of minimum
117 // latitude.
118 //
119 // TODO(smm): Do a proper error analysis.
120 Vector3d v(-n.x() * n.z(),
121 -n.y() * n.z(),
122 n.x() * n.x() + n.y() * n.y());
123 if (v != Vector3d()) {
124 // The plane defined by the z axis and n has normal
125 // (-n.y(), n.x(), 0.0). Compute the dot product of this plane
126 // normal with vertices i and j.
127 double zni = i->y() * n.x() - i->x() * n.y();
128 double znj = j->y() * n.x() - j->x() * n.y();
129 // Check if v or -v is in the edge interior.
130 if (zni > 0.0 && znj < 0.0) {
131 bbox = Box(bbox.getLon(), bbox.getLat().expandedTo(
132 LonLat::latitudeOf(v) + eps));
133 } else if (zni < 0.0 && znj > 0.0) {
134 bbox = Box(bbox.getLon(), bbox.getLat().expandedTo(
135 LonLat::latitudeOf(-v) - eps));
136 }
137 }
138 }
139 // If this polygon contains a pole, its bounding box must contain all
140 // longitudes.
141 if (!haveCW) {
142 Box northPole(Box::allLongitudes(), AngleInterval(Angle(0.5 * PI)));
143 bbox.expandTo(northPole);
144 } else if (!haveCCW) {
145 Box southPole(Box::allLongitudes(), AngleInterval(Angle(-0.5 * PI)));
146 bbox.expandTo(southPole);
147 }
148 return bbox;
149}
150
151template <typename VertexIterator>
152Box3d boundingBox3d(VertexIterator const begin, VertexIterator const end) {
153 static double const maxError = 1.0e-14;
154 // Compute the extrema of all vertex coordinates.
155 VertexIterator j = begin;
156 double emin[3] = { j->x(), j->y(), j->z() };
157 double emax[3] = { j->x(), j->y(), j->z() };
158 for (++j; j != end; ++j) {
159 for (int i = 0; i < 3; ++i) {
160 double v = j->operator()(i);
161 emin[i] = std::min(emin[i], v);
162 emax[i] = std::max(emax[i], v);
163 }
164 }
165 // Compute the extrema of all edges.
166 //
167 // It can be shown that the great circle with unit normal vector
168 // n = (n₀, n₁, n₂) has extrema in x at:
169 //
170 // (∓√(1 - n₀²), ±n₁n₀/√(1 - n₀²), ±n₂n₀/√(1 - n₀²))
171 //
172 // in y at:
173 //
174 // (±n₀n₁/√(1 - n₁²), ∓√(1 - n₁²), ±n₂n₁/√(1 - n₁²))
175 //
176 // and in z at
177 //
178 // (±n₀n₂/√(1 - n₂²), ±n₁n₂/√(1 - n₂²), ∓√(1 - n₂²))
179 //
180 // Compute these vectors for each edge, determine whether they lie in
181 // the edge, and update the extrema if so. Rounding errors in these
182 // computations are compensated for by expanding the bounding box
183 // prior to returning it.
184 j = std::prev(end);
185 VertexIterator k = begin;
186 for (; k != end; j = k, ++k) {
187 UnitVector3d n(j->robustCross(*k));
188 for (int i = 0; i < 3; ++i) {
189 double ni = n(i);
190 double d = std::fabs(1.0 - ni * ni);
191 if (d > 0.0) {
192 Vector3d e(i == 0 ? -d : n.x() * ni,
193 i == 1 ? -d : n.y() * ni,
194 i == 2 ? -d : n.z() * ni);
195 // If e or -e lies in the lune defined by the half great
196 // circle passing through n and a and the half great circle
197 // passing through n and b, the edge contains an extremum.
198 Vector3d v = e.cross(n);
199 double vdj = v.dot(*j);
200 double vdk = v.dot(*k);
201 if (vdj >= 0.0 && vdk <= 0.0) {
202 emin[i] = std::min(emin[i], -std::sqrt(d));
203 }
204 if (vdj <= 0.0 && vdk >= 0.0) {
205 emax[i] = std::max(emax[i], std::sqrt(d));
206 }
207 }
208 }
209 }
210 // Check whether the standard basis vectors and their antipodes
211 // are inside this polygon.
212 bool a[3] = { true, true, true };
213 bool b[3] = { true, true, true };
214 j = std::prev(end);
215 k = begin;
216 for (; k != end; j = k, ++k) {
217 // Test the standard basis vectors against the plane defined by
218 // vertices (j, k). Note that orientation(-x, *j, *k) =
219 // -orientation(x, *j, *k).
220 int ox = orientationX(*j, *k);
221 a[0] = a[0] && (ox <= 0);
222 b[0] = b[0] && (ox >= 0);
223 int oy = orientationY(*j, *k);
224 a[1] = a[1] && (oy <= 0);
225 b[1] = b[1] && (oy >= 0);
226 int oz = orientationZ(*j, *k);
227 a[2] = a[2] && (oz <= 0);
228 b[2] = b[2] && (oz >= 0);
229 }
230 // At this point, b[i] is true iff the standard basis vector eᵢ
231 // is inside all the half spaces defined by the polygon edges.
232 // Similarly, a[i] is true iff -eᵢ is inside the same half spaces.
233 for (int i = 0; i < 3; ++i) {
234 emin[i] = a[i] ? -1.0 : std::max(-1.0, emin[i] - maxError);
235 emax[i] = b[i] ? 1.0 : std::min(1.0, emax[i] + maxError);
236 }
237 return Box3d(Interval1d(emin[0], emax[0]),
238 Interval1d(emin[1], emax[1]),
239 Interval1d(emin[2], emax[2]));
240}
241
242template <typename VertexIterator>
243bool contains(VertexIterator const begin,
244 VertexIterator const end,
245 UnitVector3d const & v)
246{
247 VertexIterator i = std::prev(end);
248 VertexIterator j = begin;
249 for (; j != end; i = j, ++j) {
250 if (orientation(v, *i, *j) < 0) {
251 return false;
252 }
253 }
254 return true;
255}
256
257template <typename VertexIterator>
258Relationship relate(VertexIterator const begin,
259 VertexIterator const end,
260 Box const & b)
261{
262 // TODO(smm): be more accurate when computing box relations.
263 return boundingBox(begin, end).relate(b) & (DISJOINT | WITHIN);
264}
265
266template <typename VertexIterator>
267Relationship relate(VertexIterator const begin,
268 VertexIterator const end,
269 Circle const & c)
270{
271 if (c.isEmpty()) {
272 return CONTAINS | DISJOINT;
273 }
274 if (c.isFull()) {
275 return WITHIN;
276 }
277 // Determine whether or not the circle and polygon boundaries intersect.
278 // If the polygon vertices are not all inside or all outside of c, then the
279 // boundaries cross.
280 bool inside = false;
281 for (VertexIterator v = begin; v != end; ++v) {
282 double d = (*v - c.getCenter()).getSquaredNorm();
283 if (std::fabs(d - c.getSquaredChordLength()) <
285 // A polygon vertex is close to the circle boundary.
286 return INTERSECTS;
287 }
288 bool b = d < c.getSquaredChordLength();
289 if (v == begin) {
290 inside = b;
291 } else if (inside != b) {
292 // There are box vertices both inside and outside of c.
293 return INTERSECTS;
294 }
295 }
296 if (inside) {
297 // All polygon vertices are inside c. Look for points in the polygon
298 // edge interiors that are outside c.
299 for (VertexIterator a = std::prev(end), b = begin; b != end; a = b, ++b) {
300 Vector3d n = a->robustCross(*b);
301 double d = getMaxSquaredChordLength(c.getCenter(), *a, *b, n);
302 if (d > c.getSquaredChordLength() -
304 return INTERSECTS;
305 }
306 }
307 // The polygon boundary is conclusively inside c. It may still be the
308 // case that the circle punches a hole in the polygon. We check that
309 // the polygon does not contain the complement of c by testing whether
310 // or not it contains the anti-center of c.
311 if (contains(begin, end, -c.getCenter())) {
312 return INTERSECTS;
313 }
314 return WITHIN;
315 }
316 // All polygon vertices are outside c. Look for points in the polygon edge
317 // interiors that are inside c.
318 for (VertexIterator a = std::prev(end), b = begin; b != end; a = b, ++b) {
319 Vector3d n = a->robustCross(*b);
320 double d = getMinSquaredChordLength(c.getCenter(), *a, *b, n);
322 return INTERSECTS;
323 }
324 }
325 // The polygon boundary is conclusively outside of c. If the polygon
326 // contains the circle center, then the polygon contains c. Otherwise, the
327 // polygon and circle are disjoint.
328 if (contains(begin, end, c.getCenter())) {
329 return CONTAINS;
330 }
331 return DISJOINT;
332}
333
334template <typename VertexIterator1,
335 typename VertexIterator2>
336Relationship relate(VertexIterator1 const begin1,
337 VertexIterator1 const end1,
338 VertexIterator2 const begin2,
339 VertexIterator2 const end2)
340{
341 // TODO(smm): Make this more performant. Instead of the current quadratic
342 // implementation, it should be possible to determine whether the boundaries
343 // intersect by adapting the following method to the sphere:
344 //
345 // A new linear algorithm for intersecting convex polygons
346 // Computer Graphics and Image Processing, Volume 19, Issue 1, May 1982, Page 92
347 // Joseph O'Rourke, Chi-Bin Chien, Thomas Olson, David Naddor
348 //
349 // http://www.sciencedirect.com/science/article/pii/0146664X82900235
350 bool all1 = true;
351 bool any1 = false;
352 bool all2 = true;
353 bool any2 = false;
354 for (VertexIterator1 i = begin1; i != end1; ++i) {
355 bool b = contains(begin2, end2, *i);
356 all1 = b && all1;
357 any1 = b || any1;
358 }
359 for (VertexIterator2 j = begin2; j != end2; ++j) {
360 bool b = contains(begin1, end1, *j);
361 all2 = b && all2;
362 any2 = b || any2;
363 }
364 if (all1 || all2) {
365 // All vertices of one or both polygons are inside the other
366 return (all1 ? WITHIN : INTERSECTS) | (all2 ? CONTAINS : INTERSECTS);
367 }
368 if (any1 || any2) {
369 // The polygons have at least one point in common.
370 return INTERSECTS;
371 }
372 // No vertex of either polygon is inside the other. Consider all
373 // possible edge pairs and look for a crossing.
374 for (VertexIterator1 a = std::prev(end1), b = begin1;
375 b != end1; a = b, ++b) {
376 for (VertexIterator2 c = std::prev(end2), d = begin2;
377 d != end2; c = d, ++d) {
378 int acd = orientation(*a, *c, *d);
379 int bdc = orientation(*b, *d, *c);
380 if (acd == bdc && acd != 0) {
381 int cba = orientation(*c, *b, *a);
382 int dab = orientation(*d, *a, *b);
383 if (cba == dab && cba == acd) {
384 // Found a non-degenerate edge crossing
385 return INTERSECTS;
386 }
387 }
388 }
389 }
390 return DISJOINT;
391}
392
393template <typename VertexIterator>
394Relationship relate(VertexIterator const begin,
395 VertexIterator const end,
396 ConvexPolygon const & p)
397{
398 return relate(begin, end, p.getVertices().begin(), p.getVertices().end());
399}
400
401template <typename VertexIterator>
402Relationship relate(VertexIterator const begin,
403 VertexIterator const end,
404 Ellipse const & e)
405{
406 return relate(begin, end, e.getBoundingCircle()) & (CONTAINS | DISJOINT);
407}
408
409}}} // namespace lsst::sphgeom::detail
410
411#endif // LSST_SPHGEOM_CONVEXPOLYGONIMPL_H_
AmpInfoBoxKey bbox
Definition: Amplifier.cc:117
int end
This file declares a class for representing axis-aligned bounding boxes in ℝ³.
This file declares a class for representing circular regions on the unit sphere.
table::Key< int > b
table::Key< int > a
T atan2(T... args)
Angle represents an angle in radians.
Definition: Angle.h:43
AngleInterval represents closed intervals of arbitrary angles.
Definition: AngleInterval.h:40
Box3d represents a box in ℝ³.
Definition: Box3d.h:42
Box represents a rectangle in spherical coordinate space that contains its boundary.
Definition: Box.h:54
Relationship relate(LonLat const &p) const
Definition: Box.h:297
static NormalizedAngleInterval allLongitudes()
allLongitudes returns a normalized angle interval containing all valid longitude angles.
Definition: Box.h:81
Circle is a circular region on the unit sphere that contains its boundary.
Definition: Circle.h:46
bool isEmpty() const
Definition: Circle.h:109
bool isFull() const
Definition: Circle.h:114
double getSquaredChordLength() const
getSquaredChordLength returns the squared length of chords between the circle center and points on th...
Definition: Circle.h:123
UnitVector3d const & getCenter() const
getCenter returns the center of this circle as a unit vector.
Definition: Circle.h:118
ConvexPolygon is a closed convex polygon on the unit sphere.
Definition: ConvexPolygon.h:57
std::vector< UnitVector3d > const & getVertices() const
Definition: ConvexPolygon.h:99
Ellipse is an elliptical region on the sphere.
Definition: Ellipse.h:170
Circle getBoundingCircle() const override
getBoundingCircle returns a bounding-circle for this region.
Definition: Ellipse.cc:241
Interval1d represents closed intervals of ℝ.
Definition: Interval1d.h:40
LonLat represents a spherical coordinate (longitude/latitude angle) pair.
Definition: LonLat.h:48
static Angle latitudeOf(Vector3d const &v)
latitudeOf returns the latitude of the point on the unit sphere corresponding to the direction of v.
Definition: LonLat.cc:37
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
Definition: UnitVector3d.h:55
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
double dot(Vector3d const &v) const
dot returns the inner product of this vector and v.
Definition: Vector3d.h:73
double x() const
Definition: Vector3d.h:66
double y() const
Definition: Vector3d.h:68
double normalize()
normalize scales this vector to have unit norm and returns its norm prior to scaling.
Definition: Vector3d.cc:41
double z() const
Definition: Vector3d.h:70
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this vector and v.
Definition: Vector3d.h:101
T fabs(T... args)
T max(T... args)
T min(T... args)
bool contains(VertexIterator const begin, VertexIterator const end, UnitVector3d const &v)
Circle boundingCircle(VertexIterator const begin, VertexIterator const end)
Box3d boundingBox3d(VertexIterator const begin, VertexIterator const end)
UnitVector3d centroid(VertexIterator const begin, VertexIterator const end)
Relationship relate(VertexIterator const begin, VertexIterator const end, Box const &b)
Box boundingBox(VertexIterator const begin, VertexIterator const end)
int orientationZ(UnitVector3d const &b, UnitVector3d const &c)
orientationZ(b, c) is equivalent to orientation(UnitVector3d::Z(), b, c).
Definition: orientation.cc:237
double getMaxSquaredChordLength(Vector3d const &v, Vector3d const &a, Vector3d const &b, Vector3d const &n)
Let p be the unit vector furthest from v that lies on the plane with normal n in the direction of the...
Definition: utils.cc:58
double getMinSquaredChordLength(Vector3d const &v, Vector3d const &a, Vector3d const &b, Vector3d const &n)
Let p be the unit vector closest to v that lies on the plane with normal n in the direction of the cr...
Definition: utils.cc:36
constexpr double MAX_SQUARED_CHORD_LENGTH_ERROR
Definition: constants.h:50
int orientation(UnitVector3d const &a, UnitVector3d const &b, UnitVector3d const &c)
orientation computes and returns the orientations of 3 unit vectors a, b and c.
Definition: orientation.cc:135
int orientationX(UnitVector3d const &b, UnitVector3d const &c)
orientationX(b, c) is equivalent to orientation(UnitVector3d::X(), b, c).
Definition: orientation.cc:227
constexpr double PI
Definition: constants.h:36
int orientationY(UnitVector3d const &b, UnitVector3d const &c)
orientationY(b, c) is equivalent to orientation(UnitVector3d::Y(), b, c).
Definition: orientation.cc:232
T prev(T... args)
This file declares a class for representing longitude/latitude angle boxes on the unit sphere.
This file declares a class for representing elliptical regions on the unit sphere.
This file declares functions for orienting points on the sphere.
This file declares miscellaneous utility functions.
T sqrt(T... args)