LSSTApplications  16.0-11-g09ed895+2,16.0-11-g12e47bd,16.0-11-g9bb73b2+6,16.0-12-g5c924a4+6,16.0-14-g9a974b3+1,16.0-15-g1417920+1,16.0-15-gdd5ca33+1,16.0-16-gf0259e2,16.0-17-g31abd91+7,16.0-17-g7d7456e+7,16.0-17-ga3d2e9f+13,16.0-18-ga4d4bcb+1,16.0-18-gd06566c+1,16.0-2-g0febb12+21,16.0-2-g9d5294e+69,16.0-2-ga8830df+6,16.0-20-g21842373+7,16.0-24-g3eae5ec,16.0-28-gfc9ea6c+4,16.0-29-ge8801f9,16.0-3-ge00e371+34,16.0-4-g18f3627+13,16.0-4-g5f3a788+20,16.0-4-ga3eb747+10,16.0-4-gabf74b7+29,16.0-4-gb13d127+6,16.0-49-g42e581f7+6,16.0-5-g27fb78a+7,16.0-5-g6a53317+34,16.0-5-gb3f8a4b+87,16.0-6-g9321be7+4,16.0-6-gcbc7b31+42,16.0-6-gf49912c+29,16.0-7-gd2eeba5+51,16.0-71-ge89f8615e,16.0-8-g21fd5fe+29,16.0-8-g3a9f023+20,16.0-8-g4734f7a+1,16.0-8-g5858431+3,16.0-9-gf5c1f43+8,master-gd73dc1d098+1,w.2019.01
LSSTDataManagementBasePackage
RecurrenceBasis1d.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 #ifndef LSST_AFW_MATH_POLYNOMIALS_RecurrenceBasis1d_h_INCLUDED
23 #define LSST_AFW_MATH_POLYNOMIALS_RecurrenceBasis1d_h_INCLUDED
24 
27 
28 namespace lsst { namespace geom { namespace polynomials {
29 
30 template <typename Basis>
31 class Function1d;
32 
33 #ifdef DOXYGEN
34 
43 struct Recurrence {
44 
46  static double getB0(double x);
47 
49  static double getB1(double x);
50 
61  static double next(double x, std::size_t n, double current, double previous);
62 
63 };
64 
65 #endif // DOXYGEN
66 
67 
84 template <typename Recurrence>
86 public:
87 
90 
93 
95  explicit RecurrenceBasis1d(std::size_t order) noexcept :
96  _order(order)
97  {}
98 
100  RecurrenceBasis1d(RecurrenceBasis1d const &) = default;
101 
103  RecurrenceBasis1d(RecurrenceBasis1d &&) = default;
104 
106  RecurrenceBasis1d & operator=(RecurrenceBasis1d const &) = default;
107 
109  RecurrenceBasis1d & operator=(RecurrenceBasis1d &&) = default;
110 
112  std::size_t getOrder() const noexcept { return _order; }
113 
115  std::size_t size() const noexcept { return _order + 1; }
116 
123  Scaled scaled(Scaling1d const & scaling) const noexcept {
124  return Scaled(*this, scaling);
125  }
126 
145  template <typename Vector>
146  double sumWith(double x, Vector const & coefficients, SumMode mode=SumMode::FAST) const {
147  // This universal lambda lets us effectively template most of the
148  // implementation of this function on double vs. SafeSum<double>
149  // without having to define an external template.
150  auto accumulate = [x, coefficients, this](auto & sum) {
151  double previous = Recurrence::getB0(x);
152  if (_order > 0u) {
153  double current = Recurrence::getB1(x);
154  sum += coefficients[1]*current;
155  for (std::size_t n = 2; n <= _order; ++n) {
156  double next = Recurrence::next(x, n, current, previous);
157  sum += coefficients[n]*next;
158  previous = current;
159  current = next;
160  }
161  }
162  };
163  double result = 0.0;
164  if (mode == SumMode::FAST) {
165  double z = Recurrence::getB0(x)*coefficients[0];
166  accumulate(z);
167  result = z;
168  } else {
169  SafeSum<double> z(Recurrence::getB0(x)*coefficients[0]);
170  accumulate(z);
171  result = static_cast<double>(z);
172  }
173  return result;
174  }
175 
186  template <typename Vector>
187  void fill(double x, Vector && basis) const {
188  std::forward<Vector>(basis)[0] = Recurrence::getB0(x);
189  if (_order > 0u) {
190  std::forward<Vector>(basis)[1] = Recurrence::getB1(x);
191  for (std::size_t n = 2; n <= _order; ++n) {
192  std::forward<Vector>(basis)[n] = Recurrence::next(
193  x, n,
194  std::forward<Vector>(basis)[n - 1],
195  std::forward<Vector>(basis)[n - 2]
196  );
197  }
198  }
199  }
200 
201 private:
202  std::size_t _order;
203 };
204 
205 }}} // namespace lsst::geom::polynomials
206 
207 #endif // !LSST_AFW_MATH_POLYNOMIALS_RecurrenceBasis1d_h_INCLUDED
std::size_t getOrder() const noexcept
Return the order of the basis.
A 1-d basis that transforms all input points before evaluating nested basis.
Definition: ScaledBasis1d.h:44
std::size_t size() const noexcept
Return the number of elements in the basis.
void fill(double x, Vector &&basis) const
Evaluate the basis at a given point.
py::object result
Definition: schema.cc:284
Summation using regular floating-point addition.
A numerically stable summation algorithm for floating-point numbers.
Definition: SafeSum.h:62
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
A 1-d function defined by a series expansion and its coefficients.
Definition: Function1d.h:42
A base class for image defects.
Definition: cameraGeom.dox:3
static double getB0(double x)
Return the zeroth element of the basis, .
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Typedefs to be used for probability and parameter values.
Definition: common.h:46
A recurrence relation concept for RecurrenceBasis1d.
static double next(double x, std::size_t n, double current, double previous)
Return the next element in the recurrence.
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
double x
static double getB1(double x)
Return the first element of the basis, .
A 1-d affine transform that can be used to map one interval to another.
Definition: Scaling1d.h:46
double sumWith(double x, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
A basis for 1-d series expansions defined by a recurrence relation.
Scaled scaled(Scaling1d const &scaling) const noexcept
Return a scaled basis with the same order and recurrence.
RecurrenceBasis1d(std::size_t order) noexcept
Construct a basis with the given order (inclusive).
ndarray::Array< double const, 2, 2 > coefficients
double z
Definition: Match.cc:44