LSSTApplications  17.0+11,17.0+34,17.0+56,17.0+57,17.0+59,17.0+7,17.0-1-g377950a+33,17.0.1-1-g114240f+2,17.0.1-1-g4d4fbc4+28,17.0.1-1-g55520dc+49,17.0.1-1-g5f4ed7e+52,17.0.1-1-g6dd7d69+17,17.0.1-1-g8de6c91+11,17.0.1-1-gb9095d2+7,17.0.1-1-ge9fec5e+5,17.0.1-1-gf4e0155+55,17.0.1-1-gfc65f5f+50,17.0.1-1-gfc6fb1f+20,17.0.1-10-g87f9f3f+1,17.0.1-11-ge9de802+16,17.0.1-16-ga14f7d5c+4,17.0.1-17-gc79d625+1,17.0.1-17-gdae4c4a+8,17.0.1-2-g26618f5+29,17.0.1-2-g54f2ebc+9,17.0.1-2-gf403422+1,17.0.1-20-g2ca2f74+6,17.0.1-23-gf3eadeb7+1,17.0.1-3-g7e86b59+39,17.0.1-3-gb5ca14a,17.0.1-3-gd08d533+40,17.0.1-30-g596af8797,17.0.1-4-g59d126d+4,17.0.1-4-gc69c472+5,17.0.1-6-g5afd9b9+4,17.0.1-7-g35889ee+1,17.0.1-7-gc7c8782+18,17.0.1-9-gc4bbfb2+3,w.2019.22
LSSTDataManagementBasePackage
PolynomialTransform.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 
3 /*
4  * LSST Data Management System
5  * Copyright 2016 LSST/AURA
6  *
7  * This product includes software developed by the
8  * LSST Project (http://www.lsst.org/).
9  *
10  * This program is free software: you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 3 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the LSST License Statement and
21  * the GNU General Public License along with this program. If not,
22  * see <http://www.lsstcorp.org/LegalNotices/>.
23  */
24 #ifndef LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
25 #define LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
26 
27 #include "ndarray/eigen.h"
28 #include "lsst/geom/Point.h"
30 
31 namespace lsst {
32 namespace meas {
33 namespace astrom {
34 
35 class SipForwardTransform;
36 class SipReverseTransform;
37 class ScaledPolynomialTransform;
38 
46 public:
51 
55  static PolynomialTransform convert(SipForwardTransform const& other);
56 
60  static PolynomialTransform convert(SipReverseTransform const& other);
61 
72  PolynomialTransform(ndarray::Array<double const, 2, 0> const& xCoeffs,
73  ndarray::Array<double const, 2, 0> const& yCoeffs);
74 
81 
88 
95 
102 
104  void swap(PolynomialTransform& other);
105 
107  int getOrder() const { return _xCoeffs.getSize<0>() - 1; }
108 
115  ndarray::Array<double const, 2, 2> getXCoeffs() const { return _xCoeffs.shallow(); }
116 
123  ndarray::Array<double const, 2, 2> getYCoeffs() const { return _yCoeffs.shallow(); }
124 
129 
133  geom::Point2D operator()(geom::Point2D const& in) const;
134 
135 private:
136  PolynomialTransform(int order);
137 
141  friend class SipForwardTransform;
142  friend class SipReverseTransform;
144 
145  ndarray::Array<double, 2, 2> _xCoeffs;
146  ndarray::Array<double, 2, 2> _yCoeffs;
147  mutable Eigen::VectorXd _u; // workspace for operator() and linearize
148  mutable Eigen::VectorXd _v;
149 };
150 
158 public:
166 
174  static ScaledPolynomialTransform convert(SipForwardTransform const& sipForward);
175 
183  static ScaledPolynomialTransform convert(SipReverseTransform const& sipReverse);
184 
196  geom::AffineTransform const& outputScalingInverse);
197 
199 
201 
203 
205 
206  void swap(ScaledPolynomialTransform& other);
207 
209  PolynomialTransform const& getPoly() const { return _poly; }
210 
212  geom::AffineTransform const& getInputScaling() const { return _inputScaling; }
213 
215  geom::AffineTransform const& getOutputScalingInverse() const { return _outputScalingInverse; }
216 
221 
225  geom::Point2D operator()(geom::Point2D const& in) const;
226 
227 private:
229  PolynomialTransform _poly;
230  geom::AffineTransform _inputScaling;
231  geom::AffineTransform _outputScalingInverse;
232 };
233 
241 
249 
250 } // namespace astrom
251 } // namespace meas
252 } // namespace lsst
253 
254 #endif // !LSST_MEAS_ASTROM_PolynomialTransform_INCLUDED
Low-level polynomials (including special polynomials) in C++.
Definition: Basis1d.h:26
An affine coordinate transformation consisting of a linear transformation and an offset.
PolynomialTransform const & getPoly() const
Return the polynomial transform applied after the input scaling.
A fitter class for scaled polynomial transforms.
geom::AffineTransform const & getInputScaling() const
Return the first affine transform applied to input points.
A transform that maps pixel coordinates to intermediate world coordinates according to the SIP conven...
Definition: SipTransform.h:136
geom::AffineTransform const & getOutputScalingInverse() const
Return the affine transform applied to points after the polynomial transform.
PolynomialTransform(ndarray::Array< double const, 2, 0 > const &xCoeffs, ndarray::Array< double const, 2, 0 > const &yCoeffs)
Construct a new transform from existing coefficient arrays.
A base class for image defects.
void swap(PolynomialTransform &other)
Lightweight swap.
PolynomialTransform & operator=(PolynomialTransform const &other)
Copy assignment.
static PolynomialTransform convert(ScaledPolynomialTransform const &other)
Convert a ScaledPolynomialTransform to an equivalent PolynomialTransform.
A 2-d coordinate transform represented by a lazy composition of an AffineTransform, a PolynomialTransform, and another AffineTransform.
A transform that maps intermediate world coordinates to pixel coordinates according to the SIP conven...
Definition: SipTransform.h:246
geom::Point2D operator()(geom::Point2D const &in) const
Apply the transform to a point.
ndarray::Array< double const, 2, 2 > getXCoeffs() const
2-D polynomial coefficients that compute the output x coordinate.
ndarray::Array< double const, 2, 2 > getYCoeffs() const
2-D polynomial coefficients that compute the output x coordinate.
ItemVariant const * other
Definition: Schema.cc:56
geom::AffineTransform linearize(geom::Point2D const &in) const
Return an approximate affine transform at the given point.
int getOrder() const
Return the order of the polynomials.
friend PolynomialTransform compose(geom::AffineTransform const &t1, PolynomialTransform const &t2)
Return a PolynomialTransform that is equivalent to the composition t1(t2())
A 2-d coordinate transform represented by a pair of standard polynomials (one for each coordinate)...