LSSTApplications  17.0+124,17.0+14,17.0+73,18.0.0+37,18.0.0+80,18.0.0-4-g68ffd23+4,18.1.0-1-g0001055+12,18.1.0-1-g03d53ef+5,18.1.0-1-g1349e88+55,18.1.0-1-g2505f39+44,18.1.0-1-g5315e5e+4,18.1.0-1-g5e4b7ea+14,18.1.0-1-g7e8fceb+4,18.1.0-1-g85f8cd4+48,18.1.0-1-g8ff0b9f+4,18.1.0-1-ga2c679d+1,18.1.0-1-gd55f500+35,18.1.0-10-gb58edde+2,18.1.0-11-g0997b02+4,18.1.0-13-gfe4edf0b+12,18.1.0-14-g259bd21+21,18.1.0-19-gdb69f3f+2,18.1.0-2-g5f9922c+24,18.1.0-2-gd3b74e5+11,18.1.0-2-gfbf3545+32,18.1.0-26-g728bddb4+5,18.1.0-27-g6ff7ca9+2,18.1.0-3-g52aa583+25,18.1.0-3-g8ea57af+9,18.1.0-3-gb69f684+42,18.1.0-3-gfcaddf3+6,18.1.0-32-gd8786685a,18.1.0-4-gf3f9b77+6,18.1.0-5-g1dd662b+2,18.1.0-5-g6dbcb01+41,18.1.0-6-gae77429+3,18.1.0-7-g9d75d83+9,18.1.0-7-gae09a6d+30,18.1.0-9-gc381ef5+4,w.2019.45
LSSTDataManagementBasePackage
Prior.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2013 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #ifndef LSST_MEAS_MODELFIT_Prior_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_Prior_h_INCLUDED
26 
27 #include "lsst/base.h"
28 #include "lsst/afw/math/Random.h"
30 
31 namespace lsst { namespace meas { namespace modelfit {
32 
36 class Prior {
37 public:
38 
39  std::string const & getTag() const { return _tag; }
40 
47  virtual Scalar evaluate(
48  ndarray::Array<Scalar const,1,1> const & nonlinear,
49  ndarray::Array<Scalar const,1,1> const & amplitudes
50  ) const = 0;
51 
67  virtual void evaluateDerivatives(
68  ndarray::Array<Scalar const,1,1> const & nonlinear,
69  ndarray::Array<Scalar const,1,1> const & amplitudes,
70  ndarray::Array<Scalar,1,1> const & nonlinearGradient,
71  ndarray::Array<Scalar,1,1> const & amplitudeGradient,
72  ndarray::Array<Scalar,2,1> const & nonlinearHessian,
73  ndarray::Array<Scalar,2,1> const & amplitudeHessian,
74  ndarray::Array<Scalar,2,1> const & crossHessian
75  ) const = 0;
76 
110  virtual Scalar marginalize(
111  Vector const & gradient, Matrix const & hessian,
112  ndarray::Array<Scalar const,1,1> const & nonlinear
113  ) const = 0;
114 
127  virtual Scalar maximize(
128  Vector const & gradient, Matrix const & hessian,
129  ndarray::Array<Scalar const,1,1> const & nonlinear,
130  ndarray::Array<Scalar,1,1> const & amplitudes
131  ) const = 0;
132 
152  virtual void drawAmplitudes(
153  Vector const & gradient, Matrix const & hessian,
154  ndarray::Array<Scalar const,1,1> const & nonlinear,
155  afw::math::Random & rng,
156  ndarray::Array<Scalar,2,1> const & amplitudes,
157  ndarray::Array<Scalar,1,1> const & weights,
158  bool multiplyWeights=false
159  ) const = 0;
160 
161  virtual ~Prior() {}
162 
163  // No copying
164  Prior (const Prior&) = delete;
165  Prior& operator=(const Prior&) = delete;
166 
167  // No moving
168  Prior (Prior&&) = delete;
169  Prior& operator=(Prior&&) = delete;
170 
171 protected:
172 
173  explicit Prior(std::string const & tag="") : _tag(tag) {}
174 
175 private:
176  std::string _tag;
177 };
178 
179 }}} // namespace lsst::meas::modelfit
180 
181 #endif // !LSST_MEAS_MODELFIT_Prior_h_INCLUDED
virtual void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const =0
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space...
double Scalar
Typedefs to be used for probability and parameter values.
Definition: common.h:44
Prior & operator=(const Prior &)=delete
table::Key< table::Array< double > > amplitudes
STL class.
A base class for image defects.
std::string const & getTag() const
Definition: Prior.h:39
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
Typedefs to be used for probability and parameter values.
Definition: common.h:45
virtual void drawAmplitudes(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const =0
Draw a set of Monte Carlo amplitude vectors.
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Typedefs to be used for probability and parameter values.
Definition: common.h:46
Prior(std::string const &tag="")
Definition: Prior.h:173
Base class for Bayesian priors.
Definition: Prior.h:36
virtual Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const =0
Compute the amplitude vector that maximizes the prior x likelihood product.
virtual Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const =0
Return the -log amplitude integral of the prior*likelihood product.
Basic LSST definitions.
virtual Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const =0
Evaluate the prior at the given point in nonlinear and amplitude space.
Prior(const Prior &)=delete
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition: Random.h:57