LSSTApplications  17.0+124,17.0+14,17.0+73,18.0.0+37,18.0.0+80,18.0.0-4-g68ffd23+4,18.1.0-1-g0001055+12,18.1.0-1-g03d53ef+5,18.1.0-1-g1349e88+55,18.1.0-1-g2505f39+44,18.1.0-1-g5315e5e+4,18.1.0-1-g5e4b7ea+14,18.1.0-1-g7e8fceb+4,18.1.0-1-g85f8cd4+48,18.1.0-1-g8ff0b9f+4,18.1.0-1-ga2c679d+1,18.1.0-1-gd55f500+35,18.1.0-10-gb58edde+2,18.1.0-11-g0997b02+4,18.1.0-13-gfe4edf0b+12,18.1.0-14-g259bd21+21,18.1.0-19-gdb69f3f+2,18.1.0-2-g5f9922c+24,18.1.0-2-gd3b74e5+11,18.1.0-2-gfbf3545+32,18.1.0-26-g728bddb4+5,18.1.0-27-g6ff7ca9+2,18.1.0-3-g52aa583+25,18.1.0-3-g8ea57af+9,18.1.0-3-gb69f684+42,18.1.0-3-gfcaddf3+6,18.1.0-32-gd8786685a,18.1.0-4-gf3f9b77+6,18.1.0-5-g1dd662b+2,18.1.0-5-g6dbcb01+41,18.1.0-6-gae77429+3,18.1.0-7-g9d75d83+9,18.1.0-7-gae09a6d+30,18.1.0-9-gc381ef5+4,w.2019.45
LSSTDataManagementBasePackage
ScaledBasis1d.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 #ifndef LSST_AFW_MATH_POLYNOMIALS_ScaledBasis1d_h_INCLUDED
23 #define LSST_AFW_MATH_POLYNOMIALS_ScaledBasis1d_h_INCLUDED
24 
27 
28 namespace lsst { namespace geom { namespace polynomials {
29 
30 template <typename Basis>
31 class Function1d;
32 
43 template <typename Nested>
45 public:
46 
49 
52 
54  explicit ScaledBasis1d(Nested const & nested, Scaling1d const & scaling) :
55  _nested(nested),
56  _scaling(scaling)
57  {}
58 
73  ScaledBasis1d(std::size_t order, double min, double max) :
74  _nested(order),
75  _scaling(makeUnitRangeScaling1d(min, max))
76  {}
77 
79  ScaledBasis1d(ScaledBasis1d const &) = default;
80 
82  ScaledBasis1d(ScaledBasis1d &&) = default;
83 
85  ScaledBasis1d & operator=(ScaledBasis1d const &) = default;
86 
88  ScaledBasis1d & operator=(ScaledBasis1d &&) = default;
89 
91  Nested const & getNested() const noexcept { return _nested; }
92 
94  Scaling1d const & getScaling() const noexcept { return _scaling; }
95 
97  std::size_t getOrder() const { return getNested().getOrder(); }
98 
100  std::size_t size() const { return getNested().size(); }
101 
108  Scaled scaled(Scaling1d const & first) const {
109  return getNested().scaled(first.then(getScaling()));
110  }
111 
130  template <typename Vector>
131  double sumWith(double x, Vector const & coefficients, SumMode mode=SumMode::FAST) const {
132  return getNested().sumWith(getScaling().applyForward(x), coefficients, mode);
133  }
134 
145  template <typename Vector>
146  void fill(double x, Vector && basis) const {
147  return getNested().fill(getScaling().applyForward(x), std::forward<Vector>(basis));
148  }
149 
150 private:
151  Nested _nested;
152  Scaling1d _scaling;
153 };
154 
155 }}} // namespace lsst::geom::polynomials
156 
157 #endif // !LSST_AFW_MATH_POLYNOMIALS_ScaledBasis1d_h_INCLUDED
Nested const & getNested() const noexcept
Return the nested basis.
Definition: ScaledBasis1d.h:91
A 1-d basis that transforms all input points before evaluating nested basis.
Definition: ScaledBasis1d.h:44
Scaled scaled(Scaling1d const &first) const
Return a further-scaled basis with the same order.
std::size_t getOrder() const
Return the order of the basis.
Definition: ScaledBasis1d.h:97
Summation using regular floating-point addition.
Scaling1d const & getScaling() const noexcept
Return the scaling transform.
Definition: ScaledBasis1d.h:94
int min
ScaledBasis1d(std::size_t order, double min, double max)
Construct a basis that remaps the given interval to [-1, 1] before evaluating the nested basis...
Definition: ScaledBasis1d.h:73
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
A 1-d function defined by a series expansion and its coefficients.
Definition: Function1d.h:42
A base class for image defects.
double sumWith(double x, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Typedefs to be used for probability and parameter values.
Definition: common.h:46
int max
Scaling1d makeUnitRangeScaling1d(double min, double max) noexcept
Return a Scaling1d that maps the interval [min, max] to [-1, 1].
Definition: Scaling1d.h:120
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
double x
ScaledBasis1d & operator=(ScaledBasis1d const &)=default
Default copy assignment.
table::Key< double > scaling
A 1-d affine transform that can be used to map one interval to another.
Definition: Scaling1d.h:46
std::size_t size() const
Return the number of elements in the basis.
Scaling1d then(Scaling1d const &second) const noexcept
Compose two transforms.
Definition: Scaling1d.h:107
table::Key< int > nested
ScaledBasis1d(Nested const &nested, Scaling1d const &scaling)
Construct a scaled basis from a nested basis and a scaling transform.
Definition: ScaledBasis1d.h:54
ndarray::Array< double const, 2, 2 > coefficients
void fill(double x, Vector &&basis) const
Evaluate the basis at a given point.