LSSTApplications  17.0+124,17.0+14,17.0+73,18.0.0+37,18.0.0+80,18.0.0-4-g68ffd23+4,18.1.0-1-g0001055+12,18.1.0-1-g03d53ef+5,18.1.0-1-g1349e88+55,18.1.0-1-g2505f39+44,18.1.0-1-g5315e5e+4,18.1.0-1-g5e4b7ea+14,18.1.0-1-g7e8fceb+4,18.1.0-1-g85f8cd4+48,18.1.0-1-g8ff0b9f+4,18.1.0-1-ga2c679d+1,18.1.0-1-gd55f500+35,18.1.0-10-gb58edde+2,18.1.0-11-g0997b02+4,18.1.0-13-gfe4edf0b+12,18.1.0-14-g259bd21+21,18.1.0-19-gdb69f3f+2,18.1.0-2-g5f9922c+24,18.1.0-2-gd3b74e5+11,18.1.0-2-gfbf3545+32,18.1.0-26-g728bddb4+5,18.1.0-27-g6ff7ca9+2,18.1.0-3-g52aa583+25,18.1.0-3-g8ea57af+9,18.1.0-3-gb69f684+42,18.1.0-3-gfcaddf3+6,18.1.0-32-gd8786685a,18.1.0-4-gf3f9b77+6,18.1.0-5-g1dd662b+2,18.1.0-5-g6dbcb01+41,18.1.0-6-gae77429+3,18.1.0-7-g9d75d83+9,18.1.0-7-gae09a6d+30,18.1.0-9-gc381ef5+4,w.2019.45
LSSTDataManagementBasePackage
ScaledBasis2d.h
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * Developed for the LSST Data Management System.
4  * This product includes software developed by the LSST Project
5  * (https://www.lsst.org).
6  * See the COPYRIGHT file at the top-level directory of this distribution
7  * for details of code ownership.
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program. If not, see <https://www.gnu.org/licenses/>.
21  */
22 #ifndef LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
23 #define LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
24 
26 
27 namespace lsst { namespace geom { namespace polynomials {
28 
29 template <typename Basis>
30 class Function2d;
31 
42 template <typename Nested>
44 public:
45 
48 
51 
53  using Workspace = typename Nested::Workspace;
54 
56  using IndexRange = typename Nested::IndexRange;
57 
59  explicit ScaledBasis2d(Nested const & nested, Scaling2d const & scaling) :
60  _nested(nested),
61  _scaling(scaling)
62  {}
63 
77  ScaledBasis2d(std::size_t order, Box2D const & box) :
78  _nested(order),
79  _scaling(makeUnitRangeScaling2d(box))
80  {}
81 
83  ScaledBasis2d(ScaledBasis2d const &) = default;
84 
86  ScaledBasis2d(ScaledBasis2d &&) = default;
87 
89  ScaledBasis2d & operator=(ScaledBasis2d const &) = default;
90 
92  ScaledBasis2d & operator=(ScaledBasis2d &&) = default;
93 
95  Nested const & getNested() const noexcept { return _nested; }
96 
98  Scaling2d const & getScaling() const noexcept { return _scaling; }
99 
101  std::size_t getOrder() const { return getNested().getOrder(); }
102 
104  std::size_t size() const { return getNested().size(); }
105 
112  Scaled scaled(Scaling2d const & first) const {
113  return getNested().scaled(first.then(getScaling()));
114  }
115 
117  int index(int x, int y) const { return getNested().index(x, y); }
118 
139  IndexRange getIndices() const { return getNested().getIndices(); }
140 
142  Workspace makeWorkspace() const { return getNested().makeWorkspace();}
143 
162  template <typename Vector>
163  double sumWith(geom::Point2D const & point, Vector const & coefficients,
164  SumMode mode=SumMode::FAST) const {
165  return getNested().sumWith(getScaling().applyForward(point), coefficients, mode);
166  }
167 
169  template <typename Vector>
170  double sumWith(geom::Point2D const & point, Vector const & coefficients,
171  Workspace & workspace, SumMode mode=SumMode::FAST) const {
172  return getNested().sumWith(getScaling().applyForward(point), coefficients, workspace, mode);
173  }
174 
185  template <typename Vector>
186  void fill(geom::Point2D const & point, Vector && basis) const {
187  return getNested().fill(getScaling().applyForward(point),
188  std::forward<Vector>(basis));
189  }
190 
192  template <typename Vector>
193  void fill(geom::Point2D const & point, Vector && basis, Workspace & workspace) const {
194  return getNested().fill(getScaling().applyForward(point),
195  std::forward<Vector>(basis),
196  workspace);
197  }
198 
199 private:
200  Nested _nested;
201  Scaling2d _scaling;
202 };
203 
204 }}} // namespace lsst::geom::polynomials
205 
206 #endif // !LSST_AFW_MATH_POLYNOMIALS_ScaledBasis2d_h_INCLUDED
Scaling2d const & getScaling() const noexcept
Return the scaling transform.
Definition: ScaledBasis2d.h:98
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
int index(int x, int y) const
Return the flattened index of the basis function with the given x and y orders.
int y
Definition: SpanSet.cc:49
Summation using regular floating-point addition.
ScaledBasis2d & operator=(ScaledBasis2d const &)=default
Default copy assignment.
std::size_t size() const
Return the number of elements in the basis.
std::size_t getOrder() const
Return the order of the basis.
A 2-d function defined by a series expansion and its coefficients.
Definition: Function2d.h:42
typename Nested::IndexRange IndexRange
The type returned by getIndices().
Definition: ScaledBasis2d.h:56
SumMode
Enum used to control how to sum polynomial terms.
Definition: SafeSum.h:32
ScaledBasis2d(std::size_t order, Box2D const &box)
Construct a basis that remaps the given box to [-1, 1]x[-1, 1] before evaluating the nested polynomia...
Definition: ScaledBasis2d.h:77
A 2-d separable affine transform that can be used to map one interval to another. ...
Definition: Scaling2d.h:48
Nested const & getNested() const noexcept
Return the nested basis.
Definition: ScaledBasis2d.h:95
A base class for image defects.
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Typedefs to be used for probability and parameter values.
Definition: common.h:46
double sumWith(geom::Point2D const &point, Vector const &coefficients, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients.
typename Nested::Workspace Workspace
The type returned by makeWorkspace().
Definition: ScaledBasis2d.h:53
table::Key< table::Array< double > > basis
Definition: PsfexPsf.cc:361
double x
Scaling2d then(Scaling2d const &second) const noexcept
Compose two transforms.
Definition: Scaling2d.h:100
table::Key< double > scaling
A 2-d basis that transforms all input points before evaluating nested basis.
Definition: ScaledBasis2d.h:43
Scaled scaled(Scaling2d const &first) const
Return a scaled basis that delegates to a copy of this.
Scaling2d makeUnitRangeScaling2d(geom::Box2D const &box)
Return a Scaling1d that maps the given box to [-1, 1]x[-1, 1].
Definition: Scaling2d.h:112
ScaledBasis2d(Nested const &nested, Scaling2d const &scaling)
Construct a scaled basis from a nested basis and a scaling transform.
Definition: ScaledBasis2d.h:59
IndexRange getIndices() const
Return a range of iterators that dereference to Index2d.
double sumWith(geom::Point2D const &point, Vector const &coefficients, Workspace &workspace, SumMode mode=SumMode::FAST) const
Evaluate a basis expansion with the given coefficients (external workspace version).
void fill(geom::Point2D const &point, Vector &&basis) const
Evaluate the basis at a given point.
Workspace makeWorkspace() const
Allocate a workspace that can be passed to sumWith() and fill() to avoid repeated memory allocations...
table::Key< int > nested
ndarray::Array< double const, 2, 2 > coefficients
void fill(geom::Point2D const &point, Vector &&basis, Workspace &workspace) const
Evaluate the basis at a given point (external workspace version).