25 import matplotlib.colors
 
   26 from mpl_toolkits.axes_grid1 
import make_axes_locatable
 
   28 from .densityPlot 
import hide_xticklabels, hide_yticklabels
 
   29 from .. 
import modelfitLib
 
   31 __all__ = (
"OptimizerDisplay", )
 
   40         self.
grid = parent.unitGrid * sample.get(parent.recorder.trust)
 
   42         self.
grid += sample.get(parent.recorder.parameters).reshape((1,)*parent.ndim + (parent.ndim,))
 
   49         return self.
sample.get(getattr(self.
parent.recorder, name))
 
   55             self.
parent.objective.fillObjectiveValueGrid(self.
grid.reshape(-1, self.
parent.ndim),
 
   73     def __init__(self, history, model, objective, steps=11):
 
   74         self.
recorder = modelfitLib.OptimizerHistoryRecorder(history.schema)
 
   84         mgridArgs = (slice(-1.0, 1.0, steps*1j),) * self.
ndim 
   86         transposeArgs = tuple(
list(range(1, self.
ndim+1)) + [0])
 
   87         self.
unitGrid = numpy.mgrid[mgridArgs].transpose(transposeArgs).copy()
 
   89         for sample 
in history:
 
   90             if sample.get(self.
recorder.state) & modelfitLib.Optimizer.STATUS_STEP_REJECTED:
 
   91                 assert current 
is not None 
   92                 current.rejected.append(sample)
 
   97     def plot(self, xDim, yDim, n=0):
 
  118         self.
sliceX[self.
j] = slice(
None)
 
  121         self.
sliceY[self.
i] = slice(
None)
 
  124             x=numpy.array([iteration.sample.get(self.
xKey) 
for iteration 
in self.
parent.track]),
 
  125             y=numpy.array([iteration.sample.get(self.
yKey) 
for iteration 
in self.
parent.track]),
 
  126             z=numpy.array([iteration.sample.get(self.
zKey) 
for iteration 
in self.
parent.track]),
 
  129         self.
figure = matplotlib.pyplot.figure(f
"{xDim} vs {yDim}", figsize=(16, 8))
 
  130         self.
figure.subplots_adjust(left=0.025, right=0.975, bottom=0.08, top=0.95, wspace=0.12)
 
  132         self.
axes3d.autoscale(
False)
 
  138         self.
axes2d.autoscale(
False)
 
  139         divider = make_axes_locatable(self.
axes2d)
 
  140         self.
axesX = divider.append_axes(
"top", 1.5, pad=0.1, sharex=self.
axes2d)
 
  141         self.
axesX.autoscale(
False, axis=
'x')
 
  143         self.
axesY = divider.append_axes(
"right", 1.5, pad=0.1, sharey=self.
axes2d)
 
  144         self.
axesY.autoscale(
False, axis=
'y')
 
  165         current = self.
parent.track[self.
n]
 
  166         x = current.sample.get(self.
xKey)
 
  167         y = current.sample.get(self.
yKey)
 
  168         zMin1 = current.objectiveValues[self.
slice2d].
min()
 
  169         zMax1 = current.objectiveValues[self.
slice2d].
max()
 
  170         zMin2 = current.objectiveModel[self.
slice2d].
min()
 
  171         zMax2 = current.objectiveModel[self.
slice2d].
max()
 
  172         self.
setExtent(x0=x - current.trust, x1=x + current.trust,
 
  173                        y0=y - current.trust, y1=y + current.trust,
 
  174                        z0=
min(zMin1, zMin2), z1=
max(zMax1, zMax2), lock=
False)
 
  176     def setExtent(self, x0=None, x1=None, y0=None, y1=None, z0=None, z1=None, lock=True):
 
  189         self.
_extent = (x0, x1, y0, y1, z0, z1)
 
  199     def _clipZ(self, x, y, z):
 
  202             mask = numpy.logical_or.reduce([x < self.
xlim[0], x > self.
xlim[1],
 
  204                                             z < self.
zlim[0], z > self.
zlim[1]],
 
  208             return numpy.logical_not(mask).astype(int).sum() > 4
 
  211     def _contour(self, axes, *args, **kwds):
 
  212         self.
artists.extend(axes.contour(*args, **kwds).collections)
 
  215         kwds = dict(markeredgewidth=0, markerfacecolor=
'g', color=
'g', marker=
'o')
 
  222         kwds = dict(markeredgewidth=0, markerfacecolor=
'r', color=
'r', marker=
'v')
 
  223         current = self.
parent.track[self.
n]
 
  224         cx = current.sample.get(self.
xKey)
 
  225         cy = current.sample.get(self.
yKey)
 
  226         cz = current.sample.get(self.
zKey)
 
  227         for r 
in current.rejected:
 
  228             x = [cx, r.get(self.
xKey)]
 
  229             y = [cy, r.get(self.
yKey)]
 
  230             z = [cz, r.get(self.
zKey)]
 
  237         current = self.
parent.track[self.
n]
 
  240         x = current.grid[self.
slice2d + (self.
j,)]
 
  241         y = current.grid[self.
slice2d + (self.
i,)]
 
  242         z1 = current.objectiveValues[self.
slice2d].copy()
 
  243         z2 = current.objectiveModel[self.
slice2d].copy()
 
  244         norm = matplotlib.colors.Normalize(vmin=self.
zlim[0], vmax=self.
zlim[1])
 
  246         self.
_contour(self.
axes2d, x, y, z1, cmap=matplotlib.cm.spring, norm=norm)
 
  247         self.
_contour(self.
axes2d, x, y, z2, cmap=matplotlib.cm.winter, norm=norm)
 
  251             self.
_contour(self.
axes3d, x, y, z1, cmap=matplotlib.cm.spring, norm=norm)
 
  253                                                          cmap=matplotlib.cm.spring, norm=norm,
 
  254                                                          linewidth=0, antialiased=1, alpha=0.5))
 
  256             self.
_contour(self.
axes3d, x, y, z2, cmap=matplotlib.cm.winter, norm=norm)
 
  258                                                          cmap=matplotlib.cm.winter, norm=norm,
 
  259                                                          linewidth=0, antialiased=1, alpha=0.5))
 
  263                                             current.objectiveValues[self.
sliceX], 
'm-'))
 
  265                                             current.objectiveModel[self.
sliceX], 
'c-'))
 
  267                                             current.grid[self.
sliceY + (self.
i,)], 
'm-'))
 
  269                                             current.grid[self.
sliceY + (self.
i,)], 
'c-'))