LSSTApplications  19.0.0-14-gb0260a2+72efe9b372,20.0.0+7927753e06,20.0.0+8829bf0056,20.0.0+995114c5d2,20.0.0+b6f4b2abd1,20.0.0+bddc4f4cbe,20.0.0-1-g253301a+8829bf0056,20.0.0-1-g2b7511a+0d71a2d77f,20.0.0-1-g5b95a8c+7461dd0434,20.0.0-12-g321c96ea+23efe4bbff,20.0.0-16-gfab17e72e+fdf35455f6,20.0.0-2-g0070d88+ba3ffc8f0b,20.0.0-2-g4dae9ad+ee58a624b3,20.0.0-2-g61b8584+5d3db074ba,20.0.0-2-gb780d76+d529cf1a41,20.0.0-2-ged6426c+226a441f5f,20.0.0-2-gf072044+8829bf0056,20.0.0-2-gf1f7952+ee58a624b3,20.0.0-20-geae50cf+e37fec0aee,20.0.0-25-g3dcad98+544a109665,20.0.0-25-g5eafb0f+ee58a624b3,20.0.0-27-g64178ef+f1f297b00a,20.0.0-3-g4cc78c6+e0676b0dc8,20.0.0-3-g8f21e14+4fd2c12c9a,20.0.0-3-gbd60e8c+187b78b4b8,20.0.0-3-gbecbe05+48431fa087,20.0.0-38-ge4adf513+a12e1f8e37,20.0.0-4-g97dc21a+544a109665,20.0.0-4-gb4befbc+087873070b,20.0.0-4-gf910f65+5d3db074ba,20.0.0-5-gdfe0fee+199202a608,20.0.0-5-gfbfe500+d529cf1a41,20.0.0-6-g64f541c+d529cf1a41,20.0.0-6-g9a5b7a1+a1cd37312e,20.0.0-68-ga3f3dda+5fca18c6a4,20.0.0-9-g4aef684+e18322736b,w.2020.45
LSSTDataManagementBasePackage
Prior.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2013 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #ifndef LSST_MEAS_MODELFIT_Prior_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_Prior_h_INCLUDED
26 
27 #include "lsst/base.h"
28 #include "lsst/afw/math/Random.h"
30 
31 namespace lsst { namespace meas { namespace modelfit {
32 
36 class Prior {
37 public:
38 
39  std::string const & getTag() const { return _tag; }
40 
47  virtual Scalar evaluate(
48  ndarray::Array<Scalar const,1,1> const & nonlinear,
49  ndarray::Array<Scalar const,1,1> const & amplitudes
50  ) const = 0;
51 
67  virtual void evaluateDerivatives(
68  ndarray::Array<Scalar const,1,1> const & nonlinear,
69  ndarray::Array<Scalar const,1,1> const & amplitudes,
70  ndarray::Array<Scalar,1,1> const & nonlinearGradient,
71  ndarray::Array<Scalar,1,1> const & amplitudeGradient,
72  ndarray::Array<Scalar,2,1> const & nonlinearHessian,
73  ndarray::Array<Scalar,2,1> const & amplitudeHessian,
74  ndarray::Array<Scalar,2,1> const & crossHessian
75  ) const = 0;
76 
111  Vector const & gradient, Matrix const & hessian,
112  ndarray::Array<Scalar const,1,1> const & nonlinear
113  ) const = 0;
114 
127  virtual Scalar maximize(
128  Vector const & gradient, Matrix const & hessian,
129  ndarray::Array<Scalar const,1,1> const & nonlinear,
130  ndarray::Array<Scalar,1,1> const & amplitudes
131  ) const = 0;
132 
152  virtual void drawAmplitudes(
153  Vector const & gradient, Matrix const & hessian,
154  ndarray::Array<Scalar const,1,1> const & nonlinear,
155  afw::math::Random & rng,
156  ndarray::Array<Scalar,2,1> const & amplitudes,
157  ndarray::Array<Scalar,1,1> const & weights,
158  bool multiplyWeights=false
159  ) const = 0;
160 
161  virtual ~Prior() {}
162 
163  // No copying
164  Prior (const Prior&) = delete;
165  Prior& operator=(const Prior&) = delete;
166 
167  // No moving
168  Prior (Prior&&) = delete;
169  Prior& operator=(Prior&&) = delete;
170 
171 protected:
172 
173  explicit Prior(std::string const & tag="") : _tag(tag) {}
174 
175 private:
176  std::string _tag;
177 };
178 
179 }}} // namespace lsst::meas::modelfit
180 
181 #endif // !LSST_MEAS_MODELFIT_Prior_h_INCLUDED
std::string
STL class.
lsst::meas::modelfit::Prior::drawAmplitudes
virtual void drawAmplitudes(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const =0
Draw a set of Monte Carlo amplitude vectors.
lsst::meas::modelfit::Prior
Base class for Bayesian priors.
Definition: Prior.h:36
lsst::meas::modelfit::Prior::Prior
Prior(std::string const &tag="")
Definition: Prior.h:173
lsst::meas::modelfit::Prior::marginalize
virtual Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const =0
Return the -log amplitude integral of the prior*likelihood product.
lsst::meas::modelfit::Scalar
double Scalar
Typedefs to be used for probability and parameter values.
Definition: common.h:44
lsst::meas::modelfit::Prior::Prior
Prior(const Prior &)=delete
lsst::meas::modelfit::Prior::evaluate
virtual Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const =0
Evaluate the prior at the given point in nonlinear and amplitude space.
lsst::meas::modelfit::Prior::~Prior
virtual ~Prior()
Definition: Prior.h:161
base.h
lsst::meas::modelfit::Vector
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
lsst
A base class for image defects.
Definition: imageAlgorithm.dox:1
lsst::meas::modelfit::Matrix
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
Definition: common.h:45
amplitudes
table::Key< table::Array< double > > amplitudes
Definition: LinearCombinationKernel.cc:300
lsst::meas::modelfit::Prior::Prior
Prior(Prior &&)=delete
lsst::meas::modelfit::Prior::operator=
Prior & operator=(const Prior &)=delete
common.h
lsst::afw::math::Random
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition: Random.h:57
lsst::meas::modelfit::Prior::operator=
Prior & operator=(Prior &&)=delete
lsst::meas::modelfit::Prior::evaluateDerivatives
virtual void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const =0
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space.
Random.h
lsst::meas::modelfit::Prior::getTag
std::string const & getTag() const
Definition: Prior.h:39
lsst::meas::modelfit::Prior::maximize
virtual Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const =0
Compute the amplitude vector that maximizes the prior x likelihood product.