LSST Applications  21.0.0+04719a4bac,21.0.0-1-ga51b5d4+f5e6047307,21.0.0-11-g2b59f77+a9c1acf22d,21.0.0-11-ga42c5b2+86977b0b17,21.0.0-12-gf4ce030+76814010d2,21.0.0-13-g1721dae+760e7a6536,21.0.0-13-g3a573fe+768d78a30a,21.0.0-15-g5a7caf0+f21cbc5713,21.0.0-16-g0fb55c1+b60e2d390c,21.0.0-19-g4cded4ca+71a93a33c0,21.0.0-2-g103fe59+bb20972958,21.0.0-2-g45278ab+04719a4bac,21.0.0-2-g5242d73+3ad5d60fb1,21.0.0-2-g7f82c8f+8babb168e8,21.0.0-2-g8f08a60+06509c8b61,21.0.0-2-g8faa9b5+616205b9df,21.0.0-2-ga326454+8babb168e8,21.0.0-2-gde069b7+5e4aea9c2f,21.0.0-2-gecfae73+1d3a86e577,21.0.0-2-gfc62afb+3ad5d60fb1,21.0.0-25-g1d57be3cd+e73869a214,21.0.0-3-g357aad2+ed88757d29,21.0.0-3-g4a4ce7f+3ad5d60fb1,21.0.0-3-g4be5c26+3ad5d60fb1,21.0.0-3-g65f322c+e0b24896a3,21.0.0-3-g7d9da8d+616205b9df,21.0.0-3-ge02ed75+a9c1acf22d,21.0.0-4-g591bb35+a9c1acf22d,21.0.0-4-g65b4814+b60e2d390c,21.0.0-4-gccdca77+0de219a2bc,21.0.0-4-ge8a399c+6c55c39e83,21.0.0-5-gd00fb1e+05fce91b99,21.0.0-6-gc675373+3ad5d60fb1,21.0.0-64-g1122c245+4fb2b8f86e,21.0.0-7-g04766d7+cd19d05db2,21.0.0-7-gdf92d54+04719a4bac,21.0.0-8-g5674e7b+d1bd76f71f,master-gac4afde19b+a9c1acf22d,w.2021.13
LSST Data Management Base Package
Prior.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2013 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #ifndef LSST_MEAS_MODELFIT_Prior_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_Prior_h_INCLUDED
26 
27 #include "lsst/base.h"
28 #include "lsst/afw/math/Random.h"
30 
31 namespace lsst { namespace meas { namespace modelfit {
32 
36 class Prior {
37 public:
38 
39  std::string const & getTag() const { return _tag; }
40 
47  virtual Scalar evaluate(
48  ndarray::Array<Scalar const,1,1> const & nonlinear,
49  ndarray::Array<Scalar const,1,1> const & amplitudes
50  ) const = 0;
51 
67  virtual void evaluateDerivatives(
68  ndarray::Array<Scalar const,1,1> const & nonlinear,
69  ndarray::Array<Scalar const,1,1> const & amplitudes,
70  ndarray::Array<Scalar,1,1> const & nonlinearGradient,
71  ndarray::Array<Scalar,1,1> const & amplitudeGradient,
72  ndarray::Array<Scalar,2,1> const & nonlinearHessian,
73  ndarray::Array<Scalar,2,1> const & amplitudeHessian,
74  ndarray::Array<Scalar,2,1> const & crossHessian
75  ) const = 0;
76 
111  Vector const & gradient, Matrix const & hessian,
112  ndarray::Array<Scalar const,1,1> const & nonlinear
113  ) const = 0;
114 
127  virtual Scalar maximize(
128  Vector const & gradient, Matrix const & hessian,
129  ndarray::Array<Scalar const,1,1> const & nonlinear,
130  ndarray::Array<Scalar,1,1> const & amplitudes
131  ) const = 0;
132 
152  virtual void drawAmplitudes(
153  Vector const & gradient, Matrix const & hessian,
154  ndarray::Array<Scalar const,1,1> const & nonlinear,
155  afw::math::Random & rng,
156  ndarray::Array<Scalar,2,1> const & amplitudes,
157  ndarray::Array<Scalar,1,1> const & weights,
158  bool multiplyWeights=false
159  ) const = 0;
160 
161  virtual ~Prior() {}
162 
163  // No copying
164  Prior (const Prior&) = delete;
165  Prior& operator=(const Prior&) = delete;
166 
167  // No moving
168  Prior (Prior&&) = delete;
169  Prior& operator=(Prior&&) = delete;
170 
171 protected:
172 
173  explicit Prior(std::string const & tag="") : _tag(tag) {}
174 
175 private:
176  std::string _tag;
177 };
178 
179 }}} // namespace lsst::meas::modelfit
180 
181 #endif // !LSST_MEAS_MODELFIT_Prior_h_INCLUDED
table::Key< table::Array< double > > amplitudes
Basic LSST definitions.
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition: Random.h:57
Base class for Bayesian priors.
Definition: Prior.h:36
virtual Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const =0
Return the -log amplitude integral of the prior*likelihood product.
virtual Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const =0
Compute the amplitude vector that maximizes the prior x likelihood product.
std::string const & getTag() const
Definition: Prior.h:39
Prior & operator=(const Prior &)=delete
Prior & operator=(Prior &&)=delete
virtual Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const =0
Evaluate the prior at the given point in nonlinear and amplitude space.
virtual void drawAmplitudes(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const =0
Draw a set of Monte Carlo amplitude vectors.
virtual void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const =0
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space.
Prior(const Prior &)=delete
Prior(std::string const &tag="")
Definition: Prior.h:173
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
Definition: common.h:45
double Scalar
Typedefs to be used for probability and parameter values.
Definition: common.h:44
A base class for image defects.